MATH 423
 Linear Algebra II

Lecture 32:
 Adjoint operator (continued).
 Normal operators.

Dual of an inner product space

Let V be a vector space with an inner product $\langle\cdot, \cdot\rangle$. For any $\mathbf{y} \in V$ consider a function $\ell_{\mathbf{y}}: V \rightarrow \mathbb{F}$ given by $\ell_{\mathbf{y}}(\mathbf{x})=\langle\mathbf{x}, \mathbf{y}\rangle$ for all $\mathbf{x} \in V$. This function is linear.

Theorem Let $\theta: V \rightarrow V^{\prime}$ be given by $\theta(\mathbf{v})=\ell_{\mathbf{v}}$. Then (i) θ is linear if $\mathbb{F}=\mathbb{R}$ and half-linear if $\mathbb{F}=\mathbb{C}$.
(ii) θ is one-to-one, that is, \mathbf{v} is uniquely recovered by ℓ_{v}.
(iii) If V is finite-dimensional, then θ is onto, i.e., any linear functional on V is uniquely represented as $\ell_{\mathbf{v}}$ for some $\mathbf{v} \in V$.

Adjoint operator

Let L be a linear operator on an inner product space V.
Definition. The adjoint of L is a transformation $L^{*}: V \rightarrow V$ satisfying $\langle L(\mathbf{x}), \mathbf{y}\rangle=\left\langle\mathbf{x}, L^{*}(\mathbf{y})\right\rangle$ for all $\mathbf{x}, \mathbf{y} \in V$.
An equivalent condition is that $\ell_{\mathbf{y}} \circ L=\ell_{L^{*}(\mathbf{y})}$ for all $\mathbf{y} \in V$. Notice that the adjoint of L may not exist.

Theorem (i) If the adjoint operator L^{*} exists, it is unique and linear. (ii) If V is finite-dimensional, then L^{*} always exists.

Properties of adjoint operators:

- $\left(L_{1}+L_{2}\right)^{*}=L_{1}^{*}+L_{2}^{*}$
- $(r L)^{*}=\bar{r} L^{*}$
- $\left(L_{1} \circ L_{2}\right)^{*}=L_{2}^{*} \circ L_{1}^{*}$
- $\left(L^{*}\right)^{*}=L$
- $\mathrm{id}_{V}^{*}=\mathrm{id}_{V}$

Adjoint matrix

Suppose $A=\left(a_{i j}\right)$ is an $m \times n$ matrix with complex entries. The adjoint matrix of A is an $n \times m$ matrix $A^{*}=\left(b_{i j}\right)$ such that $b_{i j}=\overline{a_{j i}}$. In other words, $A^{*}=\overline{A^{t}}$.

Properties of adjoint matrices:

- $(A+B)^{*}=A^{*}+B^{*}$
- $(r A)^{*}=\bar{r} A^{*}$
- $(A B)^{*}=B^{*} A^{*}$
- $\left(A^{*}\right)^{*}=A$
- $I^{*}=1$
- $\left(A^{-1}\right)^{*}=\left(A^{*}\right)^{-1}$

Theorem Let L be a linear operator on an inner product space V of finite dimension. If β is an orthonormal basis for V, then $\left[L^{*}\right]_{\beta}=\left([L]_{\beta}\right)^{*}$.

Theorem Let L be a linear operator on an inner product space V of finite dimension. If β is an orthonormal basis for V, then $\left[L^{*}\right]_{\beta}=\left([L]_{\beta}\right)^{*}$.

Proof: Let $\beta=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right]$. Let $A=\left(a_{i j}\right)$ be the matrix of L and $B=\left(b_{i j}\right)$ be the matrix of L^{*} relative to this basis.

By definition, $a_{i j}$ is the i th coordinate of the vector $L\left(\mathbf{v}_{j}\right)$. Since the basis β is orthonormal, we have $a_{i j}=\left\langle L\left(\mathbf{v}_{j}\right), \mathbf{v}_{i}\right\rangle$. Likewise, $b_{i j}=\left\langle L^{*}\left(\mathbf{v}_{j}\right), \mathbf{v}_{i}\right\rangle$.
For any indices i, j,

$$
b_{i j}=\left\langle L^{*}\left(\mathbf{v}_{j}\right), \mathbf{v}_{i}\right\rangle=\overline{\left\langle\mathbf{v}_{i}, L^{*}\left(\mathbf{v}_{j}\right)\right\rangle}=\overline{\left\langle L\left(\mathbf{v}_{i}\right), \mathbf{v}_{j}\right\rangle}=\overline{a_{j i}} .
$$

Thus $B=A^{*}$.

Example. $\quad V=\mathbb{C}^{2}, \quad\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} \overline{y_{1}}+x_{2} \overline{y_{2}}$.
$L\left(z_{1}, z_{2}\right)=\left(z_{1}-2 i z_{2}, 3 z_{1}+i z_{2}\right)$.
L is a linear operator. The matrix of L relative to the standard basis is $A=\left(\begin{array}{cc}1 & -2 i \\ 3 & i\end{array}\right)$.
Since the standard basis is orthonormal, the matrix of the adjoint L^{*} is $A^{*}=\overline{A^{t}}=\left(\begin{array}{cc}1 & 3 \\ 2 i & -i\end{array}\right)$.
Therefore $L^{*}\binom{z_{1}}{z_{2}}=\left(\begin{array}{rr}1 & 3 \\ 2 i & -i\end{array}\right)\binom{z_{1}}{z_{2}}$.
Equivalently, $L^{*}\left(z_{1}, z_{2}\right)=\left(z_{1}+3 z_{2}, 2 i z_{1}-i z_{2}\right)$.

Example. $V=C^{\infty}([a, b]),\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x$. $L(f)=f^{\prime}$.

$$
\begin{gathered}
\langle L(f), g\rangle=\int_{a}^{b} f^{\prime}(x) g(x) d x \\
=\left.f(x) g(x)\right|_{x=a} ^{b}-\int_{a}^{b} f(x) g^{\prime}(x) d x \\
=f(b) g(b)-f(a) g(a)+\langle f,-L(g)\rangle
\end{gathered}
$$

If $g(a) \neq 0$ or $g(b) \neq 0$, then there is no function $h \in C^{\infty}([a, b])$ such that

$$
f(b) g(b)-f(a) g(a)=\langle f, h\rangle
$$

for all $f \in C^{\infty}([a, b])$. Therefore the operator L has no adjoint.

Example. $\quad V=(C[a, b], \mathbb{C}),\langle f, g\rangle=\int_{a}^{b} f(x) \overline{g(x)} d x$. $(L f)(x)=\int_{a}^{b} K(x, y) f(y) d y$, where K is a continuous function on $[a, b] \times[a, b]$. The operator L is called an integral operator; the function K is called the kernel of L.

$$
\begin{gathered}
\langle L(f), g\rangle=\int_{a}^{b}\left(\int_{a}^{b} K(x, y) f(y) d y\right) \overline{g(x)} d x \\
=\int_{a}^{b} \int_{a}^{b} K(x, y) f(y) \overline{g(x)} d x d y \\
=\int_{a}^{b} f(y)\left(\overline{\left(\int_{a}^{b} \overline{K(x, y)} g(x) d x\right.}\right) d y=\langle f, \widetilde{L}(g)\rangle,
\end{gathered}
$$

where \tilde{L} is an integral operator with the kernel $\widetilde{K}(x, y)=\overline{K(y, x)}$. Thus \widetilde{L} is the adjoint operator of L.

Normal operators

Definition. A linear operator L on an inner product space V is called normal if it commutes with its adjoint. That is, if the adjoint operator L^{*} exists and $L \circ L^{*}=L^{*} \circ L$.

There are several special classes of normal operators important for applications.
The operator L is self-adjoint if $L^{*}=L$.
Equivalently, $\langle L(\mathbf{x}), \mathbf{y}\rangle=\langle\mathbf{x}, L(\mathbf{y})\rangle$ for all $\mathbf{x}, \mathbf{y} \in V$.
The operator L is anti-selfadjoint if $L^{*}=-L$.
The operator L is unitary if $L^{*}=L^{-1}$.

Normal matrices

Definition. A square matrix A with real or complex entries is normal if $A A^{*}=A^{*} A$.

Theorem Let L be a linear operator on a finite-dimensional inner product space. Suppose A is the matrix of L relative to an orthonormal basis. Then the operator L is normal if and only if the matrix A is normal.

Special classes of normal operators give rise to special classes of normal matrices.

A matrix $A \in \mathcal{M}_{n, n}(\mathbb{C})$ is Hermitian if $A^{*}=A$, skew-Hermitian if $A^{*}=-A$, and unitary if $A^{*}=A^{-1}$.

A square matrix B with real entries is symmetric if $B^{t}=B$, skew-symmetric if $B^{t}=-B$, and orthogonal if $B^{t}=B^{-1}$.

