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Linear Algebra II

Lecture 32:
Adjoint operator (continued).

Normal operators.



Dual of an inner product space

Let V be a vector space with an inner product 〈·, ·〉.
For any y ∈ V consider a function ℓy : V → F

given by ℓy(x) = 〈x, y〉 for all x ∈ V . This
function is linear.

Theorem Let θ : V → V ′ be given by θ(v) = ℓv.

Then (i) θ is linear if F = R and half-linear if
F = C.

(ii) θ is one-to-one, that is, v is uniquely recovered
by ℓv.
(iii) If V is finite-dimensional, then θ is onto, i.e.,

any linear functional on V is uniquely represented as
ℓv for some v ∈ V .



Adjoint operator

Let L be a linear operator on an inner product space V .

Definition. The adjoint of L is a transformation L∗ : V → V

satisfying 〈L(x), y〉 = 〈x, L∗(y)〉 for all x, y ∈ V .

An equivalent condition is that ℓy◦L = ℓL∗(y) for all y ∈ V .
Notice that the adjoint of L may not exist.

Theorem (i) If the adjoint operator L∗ exists, it is unique and
linear. (ii) If V is finite-dimensional, then L∗ always exists.

Properties of adjoint operators:

• (L1 + L2)
∗ = L∗1 + L∗2

• (rL)∗ = r L∗

• (L1◦L2)
∗ = L∗2◦L

∗

1

• (L∗)∗ = L

• id
∗

V = idV



Adjoint matrix

Suppose A = (aij) is an m×n matrix with complex entries.
The adjoint matrix of A is an n×m matrix A∗ = (bij) such

that bij = aji . In other words, A∗ = At .

Properties of adjoint matrices:

• (A+ B)∗ = A∗ + B∗

• (rA)∗ = r A∗

• (AB)∗ = B∗A∗

• (A∗)∗ = A

• I ∗ = I

• (A−1)∗ = (A∗)−1

Theorem Let L be a linear operator on an inner product
space V of finite dimension. If β is an orthonormal basis for
V , then [L∗]β = ([L]β)

∗.



Theorem Let L be a linear operator on an inner

product space V of finite dimension. If β is an
orthonormal basis for V , then [L∗]β = ([L]β)

∗.

Proof: Let β = [v1, v2, . . . , vn]. Let A = (aij) be

the matrix of L and B = (bij) be the matrix of L∗

relative to this basis.

By definition, aij is the ith coordinate of the vector

L(vj). Since the basis β is orthonormal, we have
aij = 〈L(vj), vi〉. Likewise, bij = 〈L∗(vj), vi〉.

For any indices i , j ,

bij = 〈L∗(vj), vi〉 = 〈vi , L∗(vj)〉 = 〈L(vi), vj〉 = aji .

Thus B = A∗.



Example. V = C2, 〈x, y〉 = x1y1 + x2y2.

L(z1, z2) = (z1 − 2iz2, 3z1 + iz2).

L is a linear operator. The matrix of L relative to

the standard basis is A =

(
1 −2i
3 i

)
.

Since the standard basis is orthonormal, the matrix

of the adjoint L∗ is A∗ = At =

(
1 3

2i −i

)
.

Therefore L∗
(
z1
z2

)
=

(
1 3

2i −i

)(
z1
z2

)
.

Equivalently, L∗(z1, z2) = (z1 + 3z2, 2iz1 − iz2).



Example. V = C∞([a, b]), 〈f , g〉 =

∫ b

a

f (x)g(x) dx .

L(f ) = f ′.

〈L(f ), g〉 =

∫ b

a

f ′(x)g(x) dx

= f (x)g(x)
∣∣∣
b

x=a
−

∫ b

a

f (x)g ′(x) dx

= f (b)g(b)− f (a)g(a) + 〈f ,−L(g)〉.

If g(a) 6= 0 or g(b) 6= 0, then there is no function
h ∈ C∞([a, b]) such that

f (b)g(b)− f (a)g(a) = 〈f , h〉

for all f ∈ C∞([a, b]). Therefore the operator L
has no adjoint.



Example. V = (C [a, b],C), 〈f , g〉 =

∫ b

a

f (x)g(x) dx .

(Lf )(x) =

∫ b

a

K (x , y )f (y ) dy , where K is a continuous

function on [a, b]× [a, b]. The operator L is called an
integral operator; the function K is called the kernel of L.

〈L(f ), g〉 =

∫ b

a

(∫ b

a

K (x , y )f (y ) dy

)
g(x) dx

=

∫ b

a

∫ b

a

K (x , y )f (y )g(x) dx dy

=

∫ b

a

f (y )

(∫ b

a

K (x , y ) g(x) dx

)
dy = 〈f , L̃(g)〉,

where L̃ is an integral operator with the kernel

K̃ (x , y ) = K (y , x). Thus L̃ is the adjoint operator of L.



Normal operators

Definition. A linear operator L on an inner product

space V is called normal if it commutes with its
adjoint. That is, if the adjoint operator L∗ exists

and L◦L∗ = L∗◦L.

There are several special classes of normal operators
important for applications.

The operator L is self-adjoint if L∗ = L.

Equivalently, 〈L(x), y〉 = 〈x, L(y)〉 for all x, y ∈ V .

The operator L is anti-selfadjoint if L∗ = −L.

The operator L is unitary if L∗ = L−1.



Normal matrices

Definition. A square matrix A with real or complex entries is
normal if AA∗ = A∗A.

Theorem Let L be a linear operator on a finite-dimensional
inner product space. Suppose A is the matrix of L relative to
an orthonormal basis. Then the operator L is normal if and
only if the matrix A is normal.

Special classes of normal operators give rise to special classes
of normal matrices.

A matrix A ∈ Mn,n(C) is Hermitian if A∗ = A,
skew-Hermitian if A∗ = −A, and unitary if A∗ = A−1.

A square matrix B with real entries is symmetric if B t = B ,
skew-symmetric if B t = −B , and orthogonal if B t = B−1.


