MATH 423 Linear Algebra II Lecture 32: Adjoint operator (continued). Normal operators.

Dual of an inner product space

Let V be a vector space with an inner product $\langle \cdot, \cdot \rangle$. For any $\mathbf{y} \in V$ consider a function $\ell_{\mathbf{y}} : V \to \mathbb{F}$ given by $\ell_{\mathbf{y}}(\mathbf{x}) = \langle \mathbf{x}, \mathbf{y} \rangle$ for all $\mathbf{x} \in V$. This function is linear.

Theorem Let $\theta: V \to V'$ be given by $\theta(\mathbf{v}) = \ell_{\mathbf{v}}$. Then **(i)** θ is linear if $\mathbb{F} = \mathbb{R}$ and half-linear if $\mathbb{F} = \mathbb{C}$.

(ii) θ is one-to-one, that is, **v** is uniquely recovered by $\ell_{\mathbf{v}}$.

(iii) If V is finite-dimensional, then θ is onto, i.e., any linear functional on V is uniquely represented as $\ell_{\mathbf{v}}$ for some $\mathbf{v} \in V$.

Adjoint operator

Let L be a linear operator on an inner product space V.

Definition. The **adjoint** of *L* is a transformation $L^* : V \to V$ satisfying $\langle L(\mathbf{x}), \mathbf{y} \rangle = \langle \mathbf{x}, L^*(\mathbf{y}) \rangle$ for all $\mathbf{x}, \mathbf{y} \in V$.

An equivalent condition is that $\ell_{\mathbf{y}} \circ L = \ell_{L^*(\mathbf{y})}$ for all $\mathbf{y} \in V$. Notice that the adjoint of L may not exist.

Theorem (i) If the adjoint operator L^* exists, it is unique and linear. (ii) If V is finite-dimensional, then L^* always exists.

Properties of adjoint operators:

•
$$(L_1 + L_2)^* = L_1^* + L_2^*$$

•
$$(rL)^* = \overline{r} L^*$$

•
$$(L_1 \circ L_2)^* = L_2^* \circ L_1^*$$

•
$$(L^*)^* = L$$

• $\operatorname{id}_V^* = \operatorname{id}_V$

Adjoint matrix

Suppose $A = (a_{ij})$ is an $m \times n$ matrix with complex entries. The **adjoint matrix** of A is an $n \times m$ matrix $A^* = (b_{ij})$ such that $b_{ij} = \overline{a_{ji}}$. In other words, $A^* = \overline{A^t}$.

Properties of adjoint matrices:

•
$$(A + B)^* = A^* + B$$

• $(rA)^* = \overline{r} A^*$
• $(AB)^* = B^* A^*$
• $(A^*)^* = A$
• $I^* = I$
• $(A^{-1})^* = (A^*)^{-1}$

Theorem Let *L* be a linear operator on an inner product space *V* of finite dimension. If β is an orthonormal basis for *V*, then $[L^*]_{\beta} = ([L]_{\beta})^*$.

Theorem Let *L* be a linear operator on an inner product space *V* of finite dimension. If β is an orthonormal basis for *V*, then $[L^*]_{\beta} = ([L]_{\beta})^*$.

Proof: Let $\beta = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$. Let $A = (a_{ij})$ be the matrix of L and $B = (b_{ij})$ be the matrix of L^* relative to this basis.

By definition, a_{ij} is the *i*th coordinate of the vector $L(\mathbf{v}_j)$. Since the basis β is orthonormal, we have $a_{ij} = \langle L(\mathbf{v}_j), \mathbf{v}_i \rangle$. Likewise, $b_{ij} = \langle L^*(\mathbf{v}_j), \mathbf{v}_i \rangle$.

For any indices *i*, *j*,

$$b_{ij} = \langle L^*(\mathbf{v}_j), \mathbf{v}_i \rangle = \overline{\langle \mathbf{v}_i, L^*(\mathbf{v}_j) \rangle} = \overline{\langle L(\mathbf{v}_i), \mathbf{v}_j \rangle} = \overline{a_{ji}}.$$

Thus $B = A^*.$

Example.
$$V = \mathbb{C}^2$$
, $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 \overline{y_1} + x_2 \overline{y_2}$.
 $L(z_1, z_2) = (z_1 - 2iz_2, 3z_1 + iz_2)$.

- *L* is a linear operator. The matrix of *L* relative to the standard basis is $A = \begin{pmatrix} 1 & -2i \\ 3 & i \end{pmatrix}$.
- Since the standard basis is orthonormal, the matrix of the adjoint L^* is $A^* = \overline{A^t} = \begin{pmatrix} 1 & 3 \\ 2i & -i \end{pmatrix}$.

Therefore
$$L^* \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 2i & -i \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}.$$

Equivalently, $L^*(z_1, z_2) = (z_1 + 3z_2, 2iz_1 - iz_2).$

Example. $V = C^{\infty}([a, b]), \langle f, g \rangle = \int^{b} f(x)g(x) dx.$ L(f) = f'. $\langle L(f),g\rangle = \int^{b} f'(x)g(x)\,dx$ $=f(x)g(x)\Big|_{x=a}^{b}-\int^{b}f(x)g'(x)\,dx$ $= f(b)g(b) - f(a)g(a) + \langle f, -L(g) \rangle.$ If $g(a) \neq 0$ or $g(b) \neq 0$, then there is no function $h \in C^{\infty}([a, b])$ such that $f(b)g(b) - f(a)g(a) = \langle f, h \rangle$ for all $f \in C^{\infty}([a, b])$. Therefore the operator L has no adjoint.

Example.
$$V = (C[a, b], \mathbb{C}), \quad \langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} \, dx.$$

 $(Lf)(x) = \int_{a}^{b} K(x, y) f(y) \, dy, \text{ where } K \text{ is a continuous}$
function on $[a, b] \times [a, b].$ The operator L is called an

1.

integral operator; the function K is called the kernel of L.

$$\langle L(f), g \rangle = \int_{a}^{b} \left(\int_{a}^{b} K(x, y) f(y) \, dy \right) \overline{g(x)} \, dx$$
$$= \int_{a}^{b} \int_{a}^{b} K(x, y) f(y) \overline{g(x)} \, dx \, dy$$

$$=\int_{a}^{b}f(y)\left(\overline{\int_{a}^{b}\overline{K(x,y)}g(x)\,dx}\right)dy=\langle f,\widetilde{L}(g)\rangle,$$

where \widetilde{L} is an integral operator with the kernel $\widetilde{K}(x,y) = \overline{K(y,x)}$. Thus \widetilde{L} is the adjoint operator of L.

Normal operators

Definition. A linear operator L on an inner product space V is called **normal** if it commutes with its adjoint. That is, if the adjoint operator L^* exists and $L \circ L^* = L^* \circ L$.

There are several special classes of normal operators important for applications.

The operator *L* is **self-adjoint** if $L^* = L$. Equivalently, $\langle L(\mathbf{x}), \mathbf{y} \rangle = \langle \mathbf{x}, L(\mathbf{y}) \rangle$ for all $\mathbf{x}, \mathbf{y} \in V$. The operator *L* is **anti-selfadjoint** if $L^* = -L$. The operator *L* is **unitary** if $L^* = L^{-1}$.

Normal matrices

Definition. A square matrix A with real or complex entries is **normal** if $AA^* = A^*A$.

Theorem Let L be a linear operator on a finite-dimensional inner product space. Suppose A is the matrix of L relative to an orthonormal basis. Then the operator L is normal if and only if the matrix A is normal.

Special classes of normal operators give rise to special classes of normal matrices.

A matrix $A \in \mathcal{M}_{n,n}(\mathbb{C})$ is Hermitian if $A^* = A$, skew-Hermitian if $A^* = -A$, and unitary if $A^* = A^{-1}$.

A square matrix *B* with real entries is symmetric if $B^t = B$, skew-symmetric if $B^t = -B$, and orthogonal if $B^t = B^{-1}$.