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Lecture 33:
Diagonalization of normal operators.



Adjoint operator and adjoint matrix

Given a linear operator L on an inner product space
V , the adjoint of L is a transformation L∗ : V → V
satisfying 〈L(x), y〉 = 〈x, L∗(y)〉 for all x, y ∈ V .

Theorem 1 If V is finite-dimensional, then the
adjoint operator L∗ always exists.

Given a matrix A with complex entries, its adjoint
matrix is A∗ = At .

Theorem 2 If A is the matrix of a linear operator
L relative to an orthonormal basis β, then the
matrix of L∗ relative to the same basis is A∗.



Let L : V → V be a linear operator on an inner product space
V . Recall that N (L) denotes the null-space of L and R(L)
denotes the range of L:

N (L) = {x ∈ V | L(x) = 0}, R(L) = {L(y) | y ∈ V }.
Theorem If the adjoint operator L∗ exists, then
N (L) = R(L∗)⊥ as well as N (L∗) = R(L)⊥.

Proof: x ∈ N (L) ⇐⇒ L(x) = 0 ⇐⇒ 〈L(x), y〉 = 0 for all
y ∈ V ⇐⇒ 〈x, L∗(y)〉 = 0 for all y ∈ V ⇐⇒ x ⊥ R(L∗)
⇐⇒ x ∈ R(L∗)⊥.

The second equality follows in the same way since (L∗)∗ = L.

Example. V = R
n with the dot product, L(x) = Ax, where

A ∈ Mn,n(R) and vectors are regarded as column vectors.

We have L∗(x) = A∗x for all x ∈ R
n. The range of L∗ is the

column space of the matrix A∗ = At , which is the row space
of A. Therefore N (L) = {null-space of the matrix A} is the
orthogonal complement of the row space of A.



Normal operators

Definition. A linear operator L on an inner product
space V is called normal if it commutes with its
adjoint. That is, if the adjoint operator L∗ exists
and L◦L∗ = L∗◦L.

There are several special classes of normal operators
important for applications.

The operator L is self-adjoint if L∗ = L.
Equivalently, 〈L(x), y〉 = 〈x, L(y)〉 for all x, y ∈ V .

The operator L is anti-selfadjoint if L∗ = −L.
The operator L is unitary if L∗ = L−1.



Normal matrices

Definition. A square matrix A with real or complex entries is
normal if AA∗ = A∗A.

Theorem Let L be a linear operator on a finite-dimensional
inner product space. Suppose A is the matrix of L relative to
an orthonormal basis. Then the operator L is normal if and
only if the matrix A is normal.

Special classes of normal operators give rise to special classes
of normal matrices.

A matrix A ∈ Mn,n(C) is Hermitian if A∗ = A,
skew-Hermitian if A∗ = −A, and unitary if A∗ = A−1.

A square matrix B with real entries is symmetric if B t = B ,
skew-symmetric if B t = −B , and orthogonal if B t = B−1.



Properties of normal operators

Theorem Suppose L is a normal operator on an
inner product space V . Then
(i) ‖L(x)‖ = ‖L∗(x)‖ for all x ∈ V ;
(ii) N (L) = N (L∗);
(iii) an operator given by x 7→ L(x)− λx is normal
for any scalar λ;
(iv) the operators L and L∗ share eigenvectors;

namely, if L(v) = λv then L∗(v) = λv;
(v) eigenvectors of L belonging to distinct

eigenvalues are orthogonal;
(vi) if a subspace V0 ⊂ V is invariant under L,

then the orthogonal complement V⊥
0 is also

invariant under L.



Properties of normal operators

• ‖L(x)‖ = ‖L∗(x)‖ for all x ∈ V .

‖L(x)‖2 = 〈L(x), L(x)〉 = 〈x, L∗(L(x))〉 = 〈x, L(L∗(x))〉
= 〈L(L∗(x)), x〉 = 〈L∗(x), L∗(x)〉 = 〈L∗(x), L∗(x)〉 = ‖L(x)‖2.

• If v1 and v2 are eigenvectors of L belonging to
distinct eigenvalues λ1 and λ2, then 〈v1, v2〉 = 0.

We have L(v1) = λ1v1 and L∗(v2) = λ2v2. Then

λ1〈v1, v2〉 = 〈λ1v1, v2〉 = 〈L(v1), v2〉 = 〈v1, L
∗(v2)〉

= 〈v1, λ2v2〉 = λ2〈v1, v2〉.
It follows that (λ1 − λ2)〈v1, v2〉 = 0. Since λ1 6= λ2, we
obtain 〈v1, v2〉 = 0.



Diagonalization of normal operators

Theorem A linear operator L on a finite-dimensional inner
product space V is normal if and only if there exists an
orthonormal basis for V consisting of eigenvectors of L.

Proof (“if”): Suppose β is an orthonormal basis consisting of
eigenvectors of L. Then the matrix A = [L]β is diagonal,
A = diag(λ1, λ2, . . . , λn). Since β is orthonormal,
[L∗]β = A∗ = diag(λ1, λ2, . . . , λn). Clearly, AA∗ = A∗A.
Hence L◦L∗ = L∗◦L.

Idea of the proof (“only if”): The statement is derived from
the following two lemmas.

Lemma 1 (Schur’s Theorem) There exists an orthonormal
basis β for V such that the matrix [L]β is upper triangular.

Lemma 2 If a normal matrix is upper triangular, then it is
actually diagonal.



Diagonalization of normal operators

Theorem A linear operator L on a finite-dimensional inner
product space V is normal if and only if there exists an
orthonormal basis for V consisting of eigenvectors of L.

Corollary 1 Suppose L is a normal operator. Then
(i) L is self-adjoint if and only if all eigenvalues of L are real
(λ = λ);
(ii) L is anti-selfadjoint if and only if all eigenvalues of L are

purely imaginary (λ = −λ);
(iii) L is unitary if and only if all eigenvalues of L are of
absolute value 1 (λ = λ−1).

Corollary 2 A linear operator L on a finite-dimensional, real
inner product space V is self-adjoint if and only if there exists
an orthonormal basis for V consisting of eigenvectors of L.



Diagonalization of normal matrices

Theorem (a) A ∈ Mn,n(C) is normal ⇐⇒ there exists an
orthonormal basis for C

n consisting of eigenvectors of A;
(b) A ∈ Mn,n(R) is symmetric ⇐⇒ there exists an
orthonormal basis for R

n consisting of eigenvectors of A.

Example. A =





1 0 1
0 3 0
1 0 1



.

• A is symmetric.
• A has three eigenvalues: 0, 2, and 3.
• Associated eigenvectors are v1 = (−1, 0, 1), v2 = (1, 0, 1),

and v3 = (0, 1, 0), respectively.

• Vectors 1√
2
v1,

1√
2
v2, v3 form an orthonormal basis for R

3.



Example. Aφ =

(

cos φ − sin φ

sin φ cos φ

)

.

• AφAψ = Aφ+ψ

• A−1

φ = A−φ = At

φ

• Aφ is orthogonal

• det(Aφ − λI ) = (cos φ − λ)2 + sin2 φ.

• Eigenvalues: λ1 = cos φ + i sin φ = e iφ,
λ2 = cos φ − i sin φ = e−iφ.

• Associated eigenvectors: v1 = (1,−i),
v2 = (1, i).

• Vectors 1√
2
v1 and 1√

2
v2 form an orthonormal

basis for C
2.


