MATH 423
Linear Algebra Il

Lecture 33:
Diagonalization of normal operators.



Adjoint operator and adjoint matrix

Given a linear operator L on an inner product space
V, the adjoint of L is a transformation L*: V — V
satisfying (L(x),y) = (x, L*(y)) for all x,y € V.

Theorem 1 If V is finite-dimensional, then the
adjoint operator L* always exists.

Given a matrix A with complex entries, its adjoint
matrix is A* = At,

Theorem 2 If A is the matrix of a linear operator
L relative to an orthonormal basis 3, then the
matrix of L* relative to the same basis is A*.



Let L: V — V be a linear operator on an inner product space
V. Recall that V(L) denotes the null-space of L and R(L)
denotes the range of L:

N(L) ={xe V[Lx) =0}, R(L)={Ly)|yeV}

Theorem If the adjoint operator L* exists, then

N (L) = R(L*)* as well as N(L*) = R(L)*.

Proof: x € N(L) < L(x)=0 < (L(x),y) =0 for all
yeV < (x,L*(y)) =0 forall ye V < x L R(L")
< x € R(L*)*.

The second equality follows in the same way since (L*)* = L.

Example. V =R" with the dot product, L(x) = Ax, where
A e M, ,(R) and vectors are regarded as column vectors.

We have L*(x) = A*x for all x € R". The range of L* is the
column space of the matrix A* = A*, which is the row space
of A. Therefore N(L) ={null-space of the matrix A} is the
orthogonal complement of the row space of A.



Normal operators

Definition. A linear operator L on an inner product
space V is called normal if it commutes with its
adjoint. That is, if the adjoint operator L* exists
and Lol* = [*oL.

There are several special classes of normal operators
important for applications.

The operator L is self-adjoint if L* = L.
Equivalently, (L(x),y) = (x, L(y)) for all x,y € V.

The operator L is anti-selfadjoint if L* = —L.
The operator L is unitary if [* = L1,



Normal matrices

Definition. A square matrix A with real or complex entries is
normal if AA* = A*A.

Theorem Let L be a linear operator on a finite-dimensional
inner product space. Suppose A is the matrix of L relative to
an orthonormal basis. Then the operator L is normal if and
only if the matrix A is normal.

Special classes of normal operators give rise to special classes
of normal matrices.

A matrix A € M, ,(C) is Hermitian if A* = A,
skew-Hermitian if A* = —A, and unitary if A* = A™L.

A square matrix B with real entries is symmetric if B* = B,
skew-symmetric if B* = —B, and orthogonal if Bt = B~1.



Properties of normal operators

Theorem Suppose L is a normal operator on an
inner product space V. Then

(i) IIL() | = 1L (]| for all x € V;

(if) N (L) = N(L");

(iii) an operator given by x — L(x) — Ax is normal
for any scalar A;

(iv) the operators L and L* share eigenvectors;
namely, if L(v) = Av then L*(v) = \v;

(v) eigenvectors of L belonging to distinct
eigenvalues are orthogonal;

(vi) if a subspace Vy C V is invariant under L,
then the orthogonal complement V" is also
invariant under L.



Properties of normal operators

o |[L(x)]] = ||[L*(x)|| forall x e V.

ILGI? = (L(x), L(x)) = {x, L*(L(x))) = (x, L(L*(x)))
= (L(L*(x)),x) = (L*(x), L*(x)) = (L"(x), L"(x)) = [[IL(x)|*.

e If v; and v, are eigenvectors of L belonging to
distinct eigenvalues A; and A, then (vi,vy) = 0.

We have L(vi) = Ajvy and L*(vy) = A\ovo. Then
)\1<V1>V2> <)\1V1,V2> (L(V1)7V2> = <V17 L*(V2)>
<V17 /\2V2> = /\2<V1,V2>-

It follows that (A; — A2)(v1,v2) = 0. Since A\; # Ay, we
obtain (vy,vp) =0.



Diagonalization of normal operators

Theorem A linear operator L on a finite-dimensional inner
product space V is normal if and only if there exists an
orthonormal basis for V' consisting of eigenvectors of L.

Proof (“if"): Suppose (3 is an orthonormal basis consisting of
eigenvectors of L. Then the matrix A = [L] is diagonal,

A = diag(A1, A2, ..., A,). Since 3 is orthonormal,

[L*]s = A" = diag(\1, A2, ..., Ay). Clearly, AA* = A*A.
Hence Lol* = L*oL.

Idea of the proof (“only if”): The statement is derived from
the following two lemmas.

Lemma 1 (Schur's Theorem) There exists an orthonormal
basis 3 for V such that the matrix [L] is upper triangular.

Lemma 2 |If a normal matrix is upper triangular, then it is
actually diagonal.



Diagonalization of normal operators

Theorem A linear operator L on a finite-dimensional inner
product space V is normal if and only if there exists an
orthonormal basis for V' consisting of eigenvectors of L.

Corollary 1 Suppose L is a normal operator. Then

(i) L is self-adjoint if and only if all eigenvalues of L are real
(A=),

(i) L is anti-selfadjoint if and only if all eigenvalues of L are
purely imaginary (A = —\);

(iii) L is unitary if and only if all eigenvalues of L are of
absolute value 1 (A = A71).

Corollary 2 A linear operator L on a finite-dimensional, real
inner product space V is self-adjoint if and only if there exists
an orthonormal basis for V' consisting of eigenvectors of L.



Diagonalization of normal matrices

Theorem (a) A< M, ,(C) is normal <= there exists an
orthonormal basis for C" consisting of eigenvectors of A;
(b) Ae M, ,(R) is symmetric <> there exists an
orthonormal basis for R” consisting of eigenvectors of A.

Example. A=

_ o
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e A is symmetric.

e A has three eigenvalues: 0, 2, and 3.

e Associated eigenvectors are v; = (—1,0,1), v, = (1,0,1),
and vz = (0,1,0), respectively.

Ay L
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Vectors V1 5V2, V3 form an orthonormal basis for R>.



Example. A, = <COS¢ — s ¢>.

sing  cos ¢
o ApAy = Apry
° A;l =A_4= A;
e A, is orthogonal
e det(A;, — ) = (cos ¢ — A\)? +sin? ¢.
e Eigenvalues: A\ =cos¢ + ising = e,

Ay =cos¢ —ising = e .
e Associated eigenvectors: v; = (1, —),
Vo = (1, I.).
1 1
e Vectors V1 and V2 form an orthonormal

2
basis for C2.



