
MATH 423

Linear Algebra II

Lecture 34:
Unitary operators.

Orthogonal matrices.



Diagonalization of normal operators

Theorem A linear operator L on a finite-dimensional inner
product space V is normal if and only if there exists an
orthonormal basis for V consisting of eigenvectors of L.

Corollary 1 Suppose L is a normal operator. Then
(i) L is self-adjoint if and only if all eigenvalues of L are real
(λ = λ);
(ii) L is anti-selfadjoint if and only if all eigenvalues of L are

purely imaginary (λ = −λ);
(iii) L is unitary if and only if all eigenvalues of L are of
absolute value 1 (λ = λ−1).

Idea of the proof: L(x) = λx ⇐⇒ L∗(x) = λ x.

Corollary 2 A linear operator L on a finite-dimensional, real
inner product space V is self-adjoint if and only if there exists
an orthonormal basis for V consisting of eigenvectors of L.



Diagonalization of normal matrices

Theorem Matrix A ∈ Mn,n(C) is normal if and only if
there exists an orthonormal basis for C

n consisting of
eigenvectors of A.

Corollary 1 Suppose A ∈ Mn,n(C) is a normal matrix. Then

(i) A is Hermitian if and only if all eigenvalues of A are real;
(ii) A is skew-Hermitian if and only if all eigenvalues of A are
purely imaginary;
(iii) A is unitary if and only if all eigenvalues of A are of
absolute value 1.

Corollary 2 Matrix A ∈ Mn,n(R) is symmetric if and only if
there exists an orthonormal basis for R

n consisting of
eigenvectors of A.



Example. Aφ =

(

cosφ − sinφ
sinφ cosφ

)

, φ ∈ R.

• AφAψ = Aφ+ψ

AφAψ =

(

cosφ − sinφ
sinφ cosφ

)(

cosψ − sinψ
sinψ cosψ

)

=

(

cosφ cosψ − sinφ sinψ − cosφ sinψ − sinφ cosψ
sinφ cosψ + cosφ sinψ cosφ cosψ − sinφ sinψ

)

=

(

cos(φ+ ψ) − sin(φ+ ψ)
sin(φ+ ψ) cos(φ+ ψ)

)

= Aφ+ψ.

• A0 = I

A0 =

(

cos 0 − sin 0
sin 0 cos 0

)

=

(

1 0
0 1

)

= I .



Example. Aφ =

(

cosφ − sinφ
sinφ cosφ

)

, φ ∈ R.

• A−1

φ = A−φ

AφA−φ = Aφ+(−φ) = A0 = I =⇒ A−1
φ = A−φ.

• A−φ = At

φ

A−φ =

(

cos(−φ) − sin(−φ)
sin(−φ) cos(−φ)

)

=

(

cosφ sinφ
− sinφ cosφ

)

= At

φ.

• Aφ is orthogonal

At

φ = A−φ = A−1
φ =⇒ Aφ is orthogonal.



Example. Aφ =

(

cosφ − sinφ
sinφ cosφ

)

, φ ∈ R.

Characteristic polynomial:

det(Aφ − λ) =

∣

∣

∣

∣

cosφ− λ − sinφ
sinφ cosφ− λ

∣

∣

∣

∣

= (cosφ− λ)2 + sin2 φ.

Eigenvalues: λ1 = cosφ+ i sinφ = e iφ,
λ2 = cosφ− i sinφ = e−iφ.

Associated eigenvectors: v1 = (1,−i)t , v2 = (1, i)t .

Aφv1 =

(

cosφ − sinφ
sinφ cosφ

)(

1
−i

)

=

(

cosφ+ i sinφ
sinφ− i cosφ

)

= λ1v1.

Note that λ2 = λ1 and v2 = v1. Since the matrix Aφ has

real entries, Aφv1 = λ1v1 implies Aφv1 = λ1 v1.

We have 〈v1, v2〉 = 1 · 1 + (−i) · i = 1 + (−i)2 = 0,
〈v1, v1〉 = 〈v2, v2〉 = 2. Hence vectors 1√

2
v1 and 1√

2
v2 form

an orthonormal basis for C
2.



Characterization of unitary matrices

Theorem Given an n×n matrix A with complex
entries, the following conditions are equivalent:
(i) A is unitary: A∗ = A−1;
(ii) columns of A form an orthonormal basis for C

n;
(iii) rows of A form an orthonormal basis for C

n.

Sketch of the proof: Entries of the matrix A∗A are inner
products of columns of A. Entries of AA∗ are inner products
of rows of A. It follows that A∗A = I if and only if the
columns of A form an orthonormal set. Similarly, AA∗ = I if
and only if the rows of A form an orthonormal set.

The theorem implies that a unitary matrix is the
transition matrix changing coordinates from one
orthonormal basis to another.



Diagonalization of normal matrices: revisited

Theorem 1 Given an n×n matrix A with complex entries,
the following conditions are equivalent:

(i) A is normal: A∗A = AA∗;
(ii) there exists an orthonormal basis for C

n consisting of
eigenvectors of A;
(iii) there exists a diagonal matrix D and a unitary matrix U
such that A = UDU−1 (= UDU∗).

Theorem 2 Given an n×n matrix A with real entries, the
following conditions are equivalent:

(i) A is symmetric: At = A;
(ii) there exists an orthonormal basis for R

n consisting of
eigenvectors of A;
(iii) there exists a diagonal matrix D (with real entries) and
an orthogonal matrix U such that A = UDU−1 (= UDU t).



Characterizations of unitary operators

Theorem Given a linear operator on a finite-dimensional
inner product space V , the following conditions are equivalent:

(i) L is unitary;
(ii) 〈L(x), L(y)〉 = 〈x, y〉 for all x, y ∈ V ;
(iii) ‖L(x)‖ = ‖x‖ for all x ∈ V ;
(iv) the matrix of A relative to an orthonormal basis is
unitary;
(v) L maps some orthonormal basis for V to another
orthonormal basis;
(vi) L maps any orthonormal basis for V to another
orthonormal basis.

Proof that (i) =⇒ (ii): 〈L(x), L(y)〉 = 〈x, L∗(L(y))〉 = 〈x, y〉.


