MATH 423 Linear Algebra II Lecture 34: Unitary operators. Orthogonal matrices.

Diagonalization of normal operators

Theorem A linear operator L on a finite-dimensional inner product space V is normal if and only if there exists an orthonormal basis for V consisting of eigenvectors of L.

Corollary 1 Suppose *L* is a normal operator. Then (i) *L* is self-adjoint if and only if all eigenvalues of *L* are real $(\overline{\lambda} = \lambda)$;

(ii) L is anti-selfadjoint if and only if all eigenvalues of L are purely imaginary $(\overline{\lambda} = -\lambda)$;

(iii) *L* is unitary if and only if all eigenvalues of *L* are of absolute value 1 ($\overline{\lambda} = \lambda^{-1}$).

Idea of the proof: $L(\mathbf{x}) = \lambda \mathbf{x} \iff L^*(\mathbf{x}) = \overline{\lambda} \mathbf{x}$.

Corollary 2 A linear operator L on a finite-dimensional, real inner product space V is self-adjoint if and only if there exists an orthonormal basis for V consisting of eigenvectors of L.

Diagonalization of normal matrices

Theorem Matrix $A \in \mathcal{M}_{n,n}(\mathbb{C})$ is normal if and only if there exists an orthonormal basis for \mathbb{C}^n consisting of eigenvectors of A.

Corollary 1 Suppose $A \in \mathcal{M}_{n,n}(\mathbb{C})$ is a normal matrix. Then (i) A is Hermitian if and only if all eigenvalues of A are real; (ii) A is skew-Hermitian if and only if all eigenvalues of A are purely imaginary; (iii) A is unitary if and only if all eigenvalues of A are of absolute value 1.

Corollary 2 Matrix $A \in \mathcal{M}_{n,n}(\mathbb{R})$ is symmetric if and only if there exists an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of A.

Example.
$$A_{\phi} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$
, $\phi \in \mathbb{R}$.

•
$$A_{\phi}A_{\psi} = A_{\phi+\psi}$$

 $A_{\phi}A_{\psi} = \begin{pmatrix} \cos\phi & -\sin\phi\\\sin\phi & \cos\phi \end{pmatrix} \begin{pmatrix} \cos\psi & -\sin\psi\\\sin\psi & \cos\psi \end{pmatrix}$
 $= \begin{pmatrix} \cos\phi\cos\psi - \sin\phi\sin\psi & -\cos\phi\sin\psi - \sin\phi\cos\psi\\\sin\phi\cos\psi + \cos\phi\sin\psi & \cos\phi\cos\psi - \sin\phi\sin\psi \end{pmatrix}$
 $= \begin{pmatrix} \cos(\phi+\psi) & -\sin(\phi+\psi)\\\sin(\phi+\psi) & \cos(\phi+\psi) \end{pmatrix} = A_{\phi+\psi}.$

• $A_0 = I$ $A_0 = \begin{pmatrix} \cos 0 & -\sin 0\\ \sin 0 & \cos 0 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} = I.$

Example.
$$A_{\phi} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$
, $\phi \in \mathbb{R}$.

•
$$A_{\phi}^{-1} = A_{-\phi}$$

 $A_{\phi}A_{-\phi} = A_{\phi+(-\phi)} = A_0 = I \implies A_{\phi}^{-1} = A_{-\phi}$

•
$$A_{-\phi} = A_{\phi}^{t}$$

 $A_{-\phi} = \begin{pmatrix} \cos(-\phi) & -\sin(-\phi) \\ \sin(-\phi) & \cos(-\phi) \end{pmatrix} = \begin{pmatrix} \cos\phi & \sin\phi \\ -\sin\phi & \cos\phi \end{pmatrix} = A_{\phi}^{t}.$

•
$$A_{\phi}$$
 is orthogonal
 $A_{\phi}^{t} = A_{-\phi} = A_{\phi}^{-1} \implies A_{\phi}$ is orthogonal.

Example.
$$A_{\phi} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$
, $\phi \in \mathbb{R}$.

Characteristic polynomial:

$$\det(A_{\phi} - \lambda) = egin{bmatrix} \cos \phi - \lambda & -\sin \phi \ \sin \phi & \cos \phi - \lambda \end{bmatrix} = (\cos \phi - \lambda)^2 + \sin^2 \phi.$$

Eigenvalues:
$$\lambda_1 = \cos \phi + i \sin \phi = e^{i\phi}$$

 $\lambda_2 = \cos \phi - i \sin \phi = e^{-i\phi}$.

Associated eigenvectors: $\mathbf{v}_1 = (1, -i)^t$, $\mathbf{v}_2 = (1, i)^t$.

$$A_{\phi}\mathbf{v}_{1} = \begin{pmatrix} \cos\phi & -\sin\phi\\ \sin\phi & \cos\phi \end{pmatrix} \begin{pmatrix} 1\\ -i \end{pmatrix} = \begin{pmatrix} \cos\phi + i\sin\phi\\ \sin\phi - i\cos\phi \end{pmatrix} = \lambda_{1}\mathbf{v}_{1}.$$

Note that $\lambda_2 = \overline{\lambda_1}$ and $\mathbf{v}_2 = \overline{\mathbf{v}_1}$. Since the matrix A_{ϕ} has real entries, $A_{\phi}\mathbf{v}_1 = \lambda_1\mathbf{v}_1$ implies $A_{\phi}\overline{\mathbf{v}_1} = \overline{\lambda_1}\,\overline{\mathbf{v}_1}$.

We have $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = 1 \cdot 1 + (-i) \cdot \overline{i} = 1 + (-i)^2 = 0$, $\langle \mathbf{v}_1, \mathbf{v}_1 \rangle = \langle \mathbf{v}_2, \mathbf{v}_2 \rangle = 2$. Hence vectors $\frac{1}{\sqrt{2}}\mathbf{v}_1$ and $\frac{1}{\sqrt{2}}\mathbf{v}_2$ form an orthonormal basis for \mathbb{C}^2 .

Characterization of unitary matrices

Theorem Given an $n \times n$ matrix A with complex entries, the following conditions are equivalent: (i) A is unitary: $A^* = A^{-1}$; (ii) columns of A form an orthonormal basis for \mathbb{C}^n ; (iii) rows of A form an orthonormal basis for \mathbb{C}^n .

Sketch of the proof: Entries of the matrix A^*A are inner products of columns of A. Entries of AA^* are inner products of rows of A. It follows that $A^*A = I$ if and only if the columns of A form an orthonormal set. Similarly, $AA^* = I$ if and only if the rows of A form an orthonormal set.

The theorem implies that a unitary matrix is the transition matrix changing coordinates from one orthonormal basis to another.

Diagonalization of normal matrices: revisited

Theorem 1 Given an $n \times n$ matrix A with complex entries, the following conditions are equivalent:

(i) A is normal: $A^*A = AA^*$;

(ii) there exists an orthonormal basis for \mathbb{C}^n consisting of eigenvectors of A;

(iii) there exists a diagonal matrix D and a unitary matrix U such that $A = UDU^{-1}$ (= UDU^*).

Theorem 2 Given an $n \times n$ matrix A with real entries, the following conditions are equivalent:

(i) A is symmetric: $A^t = A$;

(ii) there exists an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of A;

(iii) there exists a diagonal matrix D (with real entries) and an orthogonal matrix U such that $A = UDU^{-1}$ (= UDU^{t}).

Characterizations of unitary operators

Theorem Given a linear operator on a finite-dimensional inner product space V, the following conditions are equivalent:

(i) L is unitary;
(ii) ⟨L(x), L(y)⟩ = ⟨x, y⟩ for all x, y ∈ V;
(iii) ||L(x)|| = ||x|| for all x ∈ V;
(iv) the matrix of A relative to an orthonormal basis is unitary;

(v) L maps some orthonormal basis for V to another orthonormal basis;

(vi) L maps any orthonormal basis for V to another orthonormal basis.

Proof that (i) \Longrightarrow (ii): $\langle L(\mathbf{x}), L(\mathbf{y}) \rangle = \langle \mathbf{x}, L^*(L(\mathbf{y})) \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$.