MATH 423
 Linear Algebra II

Lecture 34:
 Unitary operators.
 Orthogonal matrices.

Diagonalization of normal operators

Theorem A linear operator L on a finite-dimensional inner product space V is normal if and only if there exists an orthonormal basis for V consisting of eigenvectors of L.

Corollary 1 Suppose L is a normal operator. Then
(i) L is self-adjoint if and only if all eigenvalues of L are real ($\bar{\lambda}=\lambda$);
(ii) L is anti-selfadjoint if and only if all eigenvalues of L are purely imaginary ($\bar{\lambda}=-\lambda$);
(iii) L is unitary if and only if all eigenvalues of L are of absolute value $1\left(\bar{\lambda}=\lambda^{-1}\right)$. Idea of the proof: $L(\mathbf{x})=\lambda \mathbf{x} \Longleftrightarrow L^{*}(\mathbf{x})=\bar{\lambda} \mathbf{x}$.

Corollary 2 A linear operator L on a finite-dimensional, real inner product space V is self-adjoint if and only if there exists an orthonormal basis for V consisting of eigenvectors of L.

Diagonalization of normal matrices

Theorem Matrix $A \in \mathcal{M}_{n, n}(\mathbb{C})$ is normal if and only if there exists an orthonormal basis for \mathbb{C}^{n} consisting of eigenvectors of A.

Corollary 1 Suppose $A \in \mathcal{M}_{n, n}(\mathbb{C})$ is a normal matrix. Then
(i) A is Hermitian if and only if all eigenvalues of A are real;
(ii) A is skew-Hermitian if and only if all eigenvalues of A are purely imaginary;
(iii) A is unitary if and only if all eigenvalues of A are of absolute value 1 .

Corollary 2 Matrix $A \in \mathcal{M}_{n, n}(\mathbb{R})$ is symmetric if and only if there exists an orthonormal basis for \mathbb{R}^{n} consisting of eigenvectors of A.

Example. $\quad A_{\phi}=\left(\begin{array}{rr}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right), \quad \phi \in \mathbb{R}$.

- $A_{\phi} A_{\psi}=A_{\phi+\psi}$

$$
\begin{gathered}
A_{\phi} A_{\psi}=\left(\begin{array}{rr}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)\left(\begin{array}{rr}
\cos \psi & -\sin \psi \\
\sin \psi & \cos \psi
\end{array}\right) \\
=\left(\begin{array}{cr}
\cos \phi \cos \psi-\sin \phi \sin \psi & -\cos \phi \sin \psi-\sin \phi \cos \psi \\
\sin \phi \cos \psi+\cos \phi \sin \psi & \cos \phi \cos \psi-\sin \phi \sin \psi
\end{array}\right) \\
=\left(\begin{array}{rr}
\cos (\phi+\psi) & -\sin (\phi+\psi) \\
\sin (\phi+\psi) & \cos (\phi+\psi)
\end{array}\right)=A_{\phi+\psi .} .
\end{gathered}
$$

- $A_{0}=1$

$$
A_{0}=\left(\begin{array}{rr}
\cos 0 & -\sin 0 \\
\sin 0 & \cos 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=1 .
$$

Example. $\quad A_{\phi}=\left(\begin{array}{rr}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right), \quad \phi \in \mathbb{R}$.

- $A_{\phi}^{-1}=A_{-\phi}$
$A_{\phi} A_{-\phi}=A_{\phi+(-\phi)}=A_{0}=I \quad \Longrightarrow \quad A_{\phi}^{-1}=A_{-\phi}$.
- $A_{-\phi}=A_{\phi}^{t}$
$A_{-\phi}=\left(\begin{array}{cc}\cos (-\phi) & -\sin (-\phi) \\ \sin (-\phi) & \cos (-\phi)\end{array}\right)=\left(\begin{array}{rr}\cos \phi & \sin \phi \\ -\sin \phi & \cos \phi\end{array}\right)=A_{\phi}^{t}$.
- A_{ϕ} is orthogonal
$A_{\phi}^{t}=A_{-\phi}=A_{\phi}^{-1} \Longrightarrow A_{\phi}$ is orthogonal.

Example. $\quad A_{\phi}=\left(\begin{array}{rr}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right), \quad \phi \in \mathbb{R}$.
Characteristic polynomial:
$\operatorname{det}\left(A_{\phi}-\lambda\right)=\left|\begin{array}{cc}\cos \phi-\lambda & -\sin \phi \\ \sin \phi & \cos \phi-\lambda\end{array}\right|=(\cos \phi-\lambda)^{2}+\sin ^{2} \phi$.
Eigenvalues: $\lambda_{1}=\cos \phi+i \sin \phi=e^{i \phi}$, $\lambda_{2}=\cos \phi-i \sin \phi=e^{-i \phi}$.
Associated eigenvectors: $\mathbf{v}_{1}=(1,-i)^{t}, \mathbf{v}_{2}=(1, i)^{t}$.

$$
A_{\phi} \mathbf{v}_{1}=\left(\begin{array}{rr}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)\binom{1}{-i}=\binom{\cos \phi+i \sin \phi}{\sin \phi-i \cos \phi}=\lambda_{1} \mathbf{v}_{1} .
$$

Note that $\lambda_{2}=\overline{\lambda_{1}}$ and $\mathbf{v}_{2}=\overline{\mathbf{v}_{1}}$. Since the matrix A_{ϕ} has real entries, $A_{\phi} \mathbf{v}_{1}=\lambda_{1} \mathbf{v}_{1}$ implies $A_{\phi} \overline{\mathbf{v}_{1}}=\overline{\lambda_{1}} \overline{\mathbf{v}_{1}}$.
We have $\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle=1 \cdot 1+(-i) \cdot \bar{i}=1+(-i)^{2}=0$, $\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle=\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle=2$. Hence vectors $\frac{1}{\sqrt{2}} \mathbf{v}_{1}$ and $\frac{1}{\sqrt{2}} \mathbf{v}_{2}$ form an orthonormal basis for \mathbb{C}^{2}.

Characterization of unitary matrices

Theorem Given an $n \times n$ matrix A with complex entries, the following conditions are equivalent:
(i) A is unitary: $A^{*}=A^{-1}$;
(ii) columns of A form an orthonormal basis for \mathbb{C}^{n};
(iii) rows of A form an orthonormal basis for \mathbb{C}^{n}.

Sketch of the proof: Entries of the matrix $A^{*} A$ are inner products of columns of A. Entries of $A A^{*}$ are inner products of rows of A. It follows that $A^{*} A=I$ if and only if the columns of A form an orthonormal set. Similarly, $A A^{*}=I$ if and only if the rows of A form an orthonormal set.

The theorem implies that a unitary matrix is the transition matrix changing coordinates from one orthonormal basis to another.

Diagonalization of normal matrices: revisited

Theorem 1 Given an $n \times n$ matrix A with complex entries, the following conditions are equivalent:
(i) A is normal: $A^{*} A=A A^{*}$;
(ii) there exists an orthonormal basis for \mathbb{C}^{n} consisting of eigenvectors of A;
(iii) there exists a diagonal matrix D and a unitary matrix U such that $A=U D U^{-1}\left(=U D U^{*}\right)$.

Theorem 2 Given an $n \times n$ matrix A with real entries, the following conditions are equivalent:
(i) A is symmetric: $A^{t}=A$;
(ii) there exists an orthonormal basis for \mathbb{R}^{n} consisting of eigenvectors of A;
(iii) there exists a diagonal matrix D (with real entries) and an orthogonal matrix U such that $A=U D U^{-1}\left(=U D U^{t}\right)$.

Characterizations of unitary operators

Theorem Given a linear operator on a finite-dimensional inner product space V, the following conditions are equivalent:
(i) L is unitary;
(ii) $\langle L(\mathbf{x}), L(\mathbf{y})\rangle=\langle\mathbf{x}, \mathbf{y}\rangle$ for all $\mathbf{x}, \mathbf{y} \in V$;
(iii) $\|L(\mathbf{x})\|=\|\mathbf{x}\|$ for all $\mathbf{x} \in V$;
(iv) the matrix of A relative to an orthonormal basis is unitary;
(v) L maps some orthonormal basis for V to another orthonormal basis;
(vi) L maps any orthonormal basis for V to another orthonormal basis.

Proof that (i) \Longrightarrow (ii): $\langle L(\mathbf{x}), L(\mathbf{y})\rangle=\left\langle\mathbf{x}, L^{*}(L(\mathbf{y}))\right\rangle=\langle\mathbf{x}, \mathbf{y}\rangle$.

