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Lecture 36:
Operator of orthogonal projection.



Operator of orthogonal projection

Let W be an inner product space and V be a subspace such
that V @ VX = W. Then we can define the operator Py of
orthogonal projection onto V. Namely, any vector x € W
is uniquely represented as x = p + 0, where p € V and

o€ V%, and we let Py(x) = p.




Operator of orthogonal projection
Theorem 1 Py is a linear operator.

Proof: Take any vectors x,y € W. We have
X =p1+0; and y = py + 0y, where p;,p2 € V
and 01,0, € V. Then

x +y = (p1 + p2) + (01 + 02).
Since p; +p2 € V and o1 + 0, € V4, it follows
that Py(x +y) = p1 + p2 = Pv(x) + Pv(y).
Further, for any scalar r we have rx = rp; + ro;.
Since rp; € V and ro; € V*, we obtain
Py(rx) = rpy = rPy(x).

Thus Py is a linear operator.



Operator of orthogonal projection

Theorem 2 (i) The range of Py is V, the null-space is V.
(ii) Py is idempotent, which means P2 = P\,.
(iii) Py is self-adjoint.

Proof: By definition of the operator Py, it is zero when
restricted to the subspace V* and the identity when restricted
to the subspace V. This implies properties (i) and (ii).

Take any vectors x,y € W. We have x = p; + o4,
y = p» + 05, where p1,p> € V and 01,0, € V. Then

(Pv(x),y) = (p1,p2 + 02) = (P1,P2) + (P1,02) = (P1,P2),
(x, Pv(y)) = (P1 + 01,p2) = (P1,P2) + (01, P2) = (P1,P2)-
Thus (Py(x),y) = (x, Py(y)) so that Py is self-adjoint.



Let L be a linear operator on an inner product space W.

Theorem 3 Suppose L is normal and idempotent:
Lol* = L*oL and L[> = L. Then L is an operator of
orthogonal projection.

Proof: Let V4 and V; denote the eigenspaces of L associated
with eigenvalues 0 and 1, respectively (if 0 or 1 is not an
eigenvalue of L, the corresponding subspace is trivial). Since
L is a normal operator, it follows that V, L V4. In particular,
Vo N Vi = {0}, which implies that the sum of subspaces

VQ + V1 is direct.

For any vector x € W let p=L(x) and o =x—p. Then
L(p) = L(L(x)) = L*(x) = L(x) = p,
(o) = L(x—p) = L(x) = L(p) =p—p=0.

Thatis, p€ Vi and o € V. Therefore V; & Vo = W.

Since V, L V4, it follows that V, = Vli. Thus L is the
operator of orthogonal projection onto the subspace V;.



Example. W = R3, V is a plane spanned by vectors
x; =(1,2,2) and x, = (0,6, 3).
The operator of orthogonal projection onto V is given by

(x,vy) y (X, Vo)
(v, v1) ' (v2, v2)

Pv(X) = Vo,
where vq,v; is an arbitrary orthogonal basis for V. To get
one, we apply the Gram-Schmidt process to the basis xi, X»:

Vi = X1 = (1,2,2),

<X2,V1> 18
=(0,6,3) — —(1,2,2) =(—2,2,—1).
<V]_,V1>V1 ( )y ) 9( ) ) ( ) &y )

Vo = Xo —

Now for any vector w = (x,y, z) € R3 we obtain

X+ 2y + 2z —2X+2y — z
e

1
= §(SX — 2y +4z, —2x + 8y + 2z, 4x + 2y + 52).

(1,2,2) + (—=2,2,-1)



Example. W =TR3, V is the plane orthogonal to the vector
v=(1,-2,1).

By definition, V = {v}*. Therefore the orthogonal
complement to V is spanned by v. Hence the operator of
{x,v)

<V,V>v.

orthogonal projection onto V' is given by Py (x) =
Then the operator of orthogonal projection onto V is
Py =7 — Py., where T is the identity map.
For any vector w = (x,y,z) € R® we obtain
(w, v)

{v,v)

X—2y+z
6

Py(w) =w — v=(x,y,z)— (1,-2,1)

1
= 6(5x+2y—z, 2x 4+ 2y + 2z, —x + 2y + 52).
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1
Matrix of Py, relative to the standard basis: 6



Example. W = the space of all 27-periodic, piecewise
continuous functions f : R — C.

V' = the subspace spanned by 2n-+1 functions
h_,,, h_,H_]_, RN h_]_, ho, h]_, ey hn_]_, h,-,, where hk(X) = eikX.

A
Inner product: (f,g) = —/ f(x)g(x) dx.

2 ) .

The functions h, form an orthonormal basis for V. The
projection g = Py(f) is a partial sum of the Fourier series
of the function f:

n ) 1 ™ .
g(x) = > ce™, where ¢, ={(f, hk>:2—/ f(y)e ™dy.

k=—n ™ —TT

It provides the best approximation of f by functions from V
relative to the distance

dis(r.8) = I 5l = (= [ 10 -0 a)

—T
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Left graph: Function f € W such that f(x) = 2x
for |x| < .

Right graph: Projection P\/(f) in the case n = 12.



