MATH 423

Lecture 36:

Linear Algebra II

Operator of orthogonal projection.

Operator of orthogonal projection

Let W be an inner product space and V be a subspace such that $V \oplus V^{\perp} = W$. Then we can define the operator P_V of **orthogonal projection** onto V. Namely, any vector $\mathbf{x} \in W$ is uniquely represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V$ and $\mathbf{o} \in V^{\perp}$, and we let $P_V(\mathbf{x}) = \mathbf{p}$.

Operator of orthogonal projection

Theorem 1 P_V is a linear operator.

Proof: Take any vectors $\mathbf{x}, \mathbf{y} \in W$. We have $\mathbf{x} = \mathbf{p}_1 + \mathbf{o}_1$ and $\mathbf{y} = \mathbf{p}_2 + \mathbf{o}_2$, where $\mathbf{p}_1, \mathbf{p}_2 \in V$ and $\mathbf{o}_1, \mathbf{o}_2 \in V^{\perp}$. Then

$$\mathbf{x} + \mathbf{y} = (\mathbf{p}_1 + \mathbf{p}_2) + (\mathbf{o}_1 + \mathbf{o}_2).$$

Since $\mathbf{p}_1 + \mathbf{p}_2 \in V$ and $\mathbf{o}_1 + \mathbf{o}_2 \in V^{\perp}$, it follows that $P_V(\mathbf{x} + \mathbf{y}) = \mathbf{p}_1 + \mathbf{p}_2 = P_V(\mathbf{x}) + P_V(\mathbf{y})$.

Further, for any scalar r we have $r\mathbf{x} = r\mathbf{p}_1 + r\mathbf{o}_1$. Since $r\mathbf{p}_1 \in V$ and $r\mathbf{o}_1 \in V^{\perp}$, we obtain $P_V(r\mathbf{x}) = r\mathbf{p}_1 = rP_V(\mathbf{x})$.

Thus P_V is a linear operator.

Operator of orthogonal projection

Theorem 2 (i) The range of P_V is V, the null-space is V^{\perp} . (ii) P_V is idempotent, which means $P_V^2 = P_V$. (iii) P_V is self-adjoint.

Proof: By definition of the operator P_V , it is zero when restricted to the subspace V^\perp and the identity when restricted to the subspace V. This implies properties (i) and (ii).

Take any vectors
$$\mathbf{x}, \mathbf{y} \in W$$
. We have $\mathbf{x} = \mathbf{p}_1 + \mathbf{o}_1$, $\mathbf{y} = \mathbf{p}_2 + \mathbf{o}_2$, where $\mathbf{p}_1, \mathbf{p}_2 \in V$ and $\mathbf{o}_1, \mathbf{o}_2 \in V^{\perp}$. Then $\langle P_V(\mathbf{x}), \mathbf{y} \rangle = \langle \mathbf{p}_1, \mathbf{p}_2 + \mathbf{o}_2 \rangle = \langle \mathbf{p}_1, \mathbf{p}_2 \rangle + \langle \mathbf{p}_1, \mathbf{o}_2 \rangle = \langle \mathbf{p}_1, \mathbf{p}_2 \rangle$, $\langle \mathbf{x}, P_V(\mathbf{y}) \rangle = \langle \mathbf{p}_1 + \mathbf{o}_1, \mathbf{p}_2 \rangle = \langle \mathbf{p}_1, \mathbf{p}_2 \rangle + \langle \mathbf{o}_1, \mathbf{p}_2 \rangle = \langle \mathbf{p}_1, \mathbf{p}_2 \rangle$.

Thus $\langle P_V(\mathbf{x}), \mathbf{y} \rangle = \langle \mathbf{x}, P_V(\mathbf{y}) \rangle$ so that P_V is self-adjoint.

Let L be a linear operator on an inner product space W.

Theorem 3 Suppose L is normal and idempotent: $L \circ L^* = L^* \circ L$ and $L^2 = L$. Then L is an operator of orthogonal projection.

Proof: Let V_0 and V_1 denote the eigenspaces of L associated with eigenvalues 0 and 1, respectively (if 0 or 1 is not an eigenvalue of L, the corresponding subspace is trivial). Since L is a normal operator, it follows that $V_0 \perp V_1$. In particular, $V_0 \cap V_1 = \{\mathbf{0}\}$, which implies that the sum of subspaces $V_0 + V_1$ is direct.

For any vector $\mathbf{x} \in W$ let $\mathbf{p} = L(\mathbf{x})$ and $\mathbf{o} = \mathbf{x} - \mathbf{p}$. Then

$$L(\mathbf{p}) = L(L(\mathbf{x})) = L^2(\mathbf{x}) = L(\mathbf{x}) = \mathbf{p},$$

 $L(\mathbf{o}) = L(\mathbf{x} - \mathbf{p}) = L(\mathbf{x}) - L(\mathbf{p}) = \mathbf{p} - \mathbf{p} = \mathbf{0}.$

That is, $\mathbf{p} \in V_1$ and $\mathbf{o} \in V_0$. Therefore $V_1 \oplus V_0 = W$. Since $V_0 \perp V_1$, it follows that $V_0 = V_1^{\perp}$. Thus L is the operator of orthogonal projection onto the subspace V_1 .

Example. $W = \mathbb{R}^3$, V is a plane spanned by vectors $\mathbf{x}_1 = (1, 2, 2)$ and $\mathbf{x}_2 = (0, 6, 3)$.

The operator of orthogonal projection onto V is given by

$$P_V(\mathsf{x}) = rac{\langle \mathsf{x}, \mathsf{v}_1
angle}{\langle \mathsf{v}_1, \mathsf{v}_1
angle} \mathsf{v}_1 + rac{\langle \mathsf{x}, \mathsf{v}_2
angle}{\langle \mathsf{v}_2, \mathsf{v}_2
angle} \mathsf{v}_2,$$

where $\mathbf{v}_1, \mathbf{v}_2$ is an arbitrary orthogonal basis for V. To get one, we apply the Gram-Schmidt process to the basis $\mathbf{x}_1, \mathbf{x}_2$:

$$\mathbf{v}_1 = \mathbf{x}_1 = (1, 2, 2),$$
 $\mathbf{v}_2 = \mathbf{x}_2 - \frac{\langle \mathbf{x}_2, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 = (0, 6, 3) - \frac{18}{9} (1, 2, 2) = (-2, 2, -1).$

Now for any vector $\mathbf{w} = (\mathbf{v}, \mathbf{v}, \mathbf{z}) \in \mathbb{D}^3$ we obtain

Now for any vector
$$\mathbf{w} = (x, y, z) \in \mathbb{R}^3$$
 we obtain
$$P_V(\mathbf{w}) = \frac{x + 2y + 2z}{9} (1, 2, 2) + \frac{-2x + 2y - z}{9} (-2, 2, -1)$$
$$= \frac{1}{9} (5x - 2y + 4z, -2x + 8y + 2z, 4x + 2y + 5z).$$

Example. $W = \mathbb{R}^3$, V is the plane orthogonal to the vector $\mathbf{v} = (1, -2, 1)$.

By definition, $V = \{\mathbf{v}\}^{\perp}$. Therefore the orthogonal complement to V is spanned by \mathbf{v} . Hence the operator of orthogonal projection onto V^{\perp} is given by $P_{V^{\perp}}(\mathbf{x}) = \frac{\langle \mathbf{x}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}$.

Then the operator of orthogonal projection onto V is $P_V = \mathcal{I} - P_{V^{\perp}}$, where \mathcal{I} is the identity map.

For any vector $\mathbf{w}=(x,y,z)\in\mathbb{R}^3$ we obtain

$$P_V(\mathbf{w}) = \mathbf{w} - \frac{\langle \mathbf{w}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v} = (x, y, z) - \frac{x - 2y + z}{6} (1, -2, 1)$$
$$= \frac{1}{6} (5x + 2y - z, 2x + 2y + 2z, -x + 2y + 5z).$$

Matrix of
$$P_V$$
 relative to the standard basis: $\frac{1}{6}\begin{pmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{pmatrix}$.

Example. W= the space of all 2π -periodic, piecewise continuous functions $f:\mathbb{R}\to\mathbb{C}$.

V= the subspace spanned by 2n+1 functions $h_{-n},h_{-n+1},\ldots,h_{-1},h_0,h_1,\ldots,h_{n-1},h_n,$ where $h_k(x)=e^{ikx}$.

Inner product: $\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx$.

The functions h_k form an orthonormal basis for V. The projection $g = P_V(f)$ is a partial sum of the **Fourier series** of the function f:

$$g(x) = \sum_{k=-n}^{n} c_k e^{ikx}$$
, where $c_k = \langle f, h_k \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) e^{-iky} dy$.

It provides the best approximation of f by functions from V relative to the distance

$$\operatorname{dist}(f,g) = \|f - g\| = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - g(x)|^2 dx\right)^{1/2}.$$

Left graph: Function $f \in W$ such that f(x) = 2x for $|x| < \pi$.

Right graph: Projection $P_V(f)$ in the case n = 12.