MATH 423
 Linear Algebra II

Lecture 36:
 Operator of orthogonal projection.

Operator of orthogonal projection

Let W be an inner product space and V be a subspace such that $V \oplus V^{\perp}=W$. Then we can define the operator P_{V} of orthogonal projection onto V. Namely, any vector $\mathbf{x} \in W$ is uniquely represented as $\mathbf{x}=\mathbf{p}+\mathbf{o}$, where $\mathbf{p} \in V$ and $\mathbf{o} \in V^{\perp}$, and we let $P_{V}(\mathbf{x})=\mathbf{p}$.

Operator of orthogonal projection

Theorem $1 P_{V}$ is a linear operator.
Proof: Take any vectors $\mathbf{x}, \mathbf{y} \in W$. We have $\mathbf{x}=\mathbf{p}_{1}+\mathbf{o}_{1}$ and $\mathbf{y}=\mathbf{p}_{2}+\mathbf{o}_{2}$, where $\mathbf{p}_{1}, \mathbf{p}_{2} \in V$ and $\mathbf{o}_{1}, \mathbf{o}_{2} \in V^{\perp}$. Then

$$
\mathbf{x}+\mathbf{y}=\left(\mathbf{p}_{1}+\mathbf{p}_{2}\right)+\left(\mathbf{o}_{1}+\mathbf{o}_{2}\right)
$$

Since $\mathbf{p}_{1}+\mathbf{p}_{2} \in V$ and $\mathbf{o}_{1}+\mathbf{o}_{2} \in V^{\perp}$, it follows that $P_{V}(\mathbf{x}+\mathbf{y})=\mathbf{p}_{1}+\mathbf{p}_{2}=P_{V}(\mathbf{x})+P_{V}(\mathbf{y})$.
Further, for any scalar r we have $r \mathbf{x}=r \mathbf{p}_{1}+r \mathbf{o}_{1}$. Since $r \mathbf{p}_{1} \in V$ and $r \mathbf{o}_{1} \in V^{\perp}$, we obtain $P_{V}(r \mathbf{x})=r \mathbf{p}_{1}=r P_{V}(\mathbf{x})$.
Thus P_{V} is a linear operator.

Operator of orthogonal projection

Theorem 2 (i) The range of P_{V} is V, the null-space is V^{\perp}.
(ii) P_{V} is idempotent, which means $P_{V}^{2}=P_{V}$.
(iii) P_{V} is self-adjoint.

Proof: By definition of the operator P_{V}, it is zero when restricted to the subspace V^{\perp} and the identity when restricted to the subspace V. This implies properties (i) and (ii).

Take any vectors $\mathbf{x}, \mathbf{y} \in W$. We have $\mathbf{x}=\mathbf{p}_{1}+\mathbf{o}_{1}$,
$\mathbf{y}=\mathbf{p}_{2}+\mathbf{o}_{2}$, where $\mathbf{p}_{1}, \mathbf{p}_{2} \in V$ and $\mathbf{o}_{1}, \mathbf{o}_{2} \in V^{\perp}$. Then

$$
\begin{aligned}
\left\langle P_{V}(\mathbf{x}), \mathbf{y}\right\rangle=\left\langle\mathbf{p}_{1}, \mathbf{p}_{2}+\mathbf{o}_{2}\right\rangle & =\left\langle\mathbf{p}_{1}, \mathbf{p}_{2}\right\rangle+\left\langle\mathbf{p}_{1}, \mathbf{o}_{2}\right\rangle=\left\langle\mathbf{p}_{1}, \mathbf{p}_{2}\right\rangle, \\
\left\langle\mathbf{x}, P_{V}(\mathbf{y})\right\rangle=\left\langle\mathbf{p}_{1}+\mathbf{o}_{1}, \mathbf{p}_{2}\right\rangle & =\left\langle\mathbf{p}_{1}, \mathbf{p}_{2}\right\rangle+\left\langle\mathbf{o}_{1}, \mathbf{p}_{2}\right\rangle=\left\langle\mathbf{p}_{1}, \mathbf{p}_{2}\right\rangle .
\end{aligned}
$$

Thus $\left\langle P_{V}(\mathbf{x}), \mathbf{y}\right\rangle=\left\langle\mathbf{x}, P_{V}(\mathbf{y})\right\rangle$ so that P_{V} is self-adjoint.

Let L be a linear operator on an inner product space W.
Theorem 3 Suppose L is normal and idempotent: $L o L^{*}=L^{*} \circ L$ and $L^{2}=L$. Then L is an operator of orthogonal projection.

Proof: Let V_{0} and V_{1} denote the eigenspaces of L associated with eigenvalues 0 and 1 , respectively (if 0 or 1 is not an eigenvalue of L, the corresponding subspace is trivial). Since L is a normal operator, it follows that $V_{0} \perp V_{1}$. In particular, $V_{0} \cap V_{1}=\{\mathbf{0}\}$, which implies that the sum of subspaces $V_{0}+V_{1}$ is direct.
For any vector $\mathbf{x} \in W$ let $\mathbf{p}=L(\mathbf{x})$ and $\mathbf{o}=\mathbf{x}-\mathbf{p}$. Then

$$
\begin{aligned}
& L(\mathbf{p})=L(L(\mathbf{x}))=L^{2}(\mathbf{x})=L(\mathbf{x})=\mathbf{p}, \\
& L(\mathbf{o})=L(\mathbf{x}-\mathbf{p})=L(\mathbf{x})-L(\mathbf{p})=\mathbf{p}-\mathbf{p}=\mathbf{0} .
\end{aligned}
$$

That is, $\mathbf{p} \in V_{1}$ and $\mathbf{o} \in V_{0}$. Therefore $V_{1} \oplus V_{0}=W$. Since $V_{0} \perp V_{1}$, it follows that $V_{0}=V_{1}^{\perp}$. Thus L is the operator of orthogonal projection onto the subspace V_{1}.

Example. $\quad W=\mathbb{R}^{3}, V$ is a plane spanned by vectors $\mathbf{x}_{1}=(1,2,2)$ and $\mathbf{x}_{2}=(0,6,3)$.

The operator of orthogonal projection onto V is given by

$$
P_{V}(\mathbf{x})=\frac{\left\langle\mathbf{x}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}+\frac{\left\langle\mathbf{x}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}
$$

where $\mathbf{v}_{1}, \mathbf{v}_{2}$ is an arbitrary orthogonal basis for V. To get one, we apply the Gram-Schmidt process to the basis $\mathbf{x}_{1}, \mathbf{x}_{2}$:

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{x}_{1}=(1,2,2) \\
& \mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{x}_{2}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}=(0,6,3)-\frac{18}{9}(1,2,2)=(-2,2,-1)
\end{aligned}
$$

Now for any vector $\mathbf{w}=(x, y, z) \in \mathbb{R}^{3}$ we obtain

$$
\begin{aligned}
& P_{V}(\mathbf{w})=\frac{x+2 y+2 z}{9}(1,2,2)+\frac{-2 x+2 y-z}{9}(-2,2,-1) \\
& \quad=\frac{1}{9}(5 x-2 y+4 z,-2 x+8 y+2 z, 4 x+2 y+5 z)
\end{aligned}
$$

Example. $\quad W=\mathbb{R}^{3}, V$ is the plane orthogonal to the vector $\mathbf{v}=(1,-2,1)$.

By definition, $V=\{\mathbf{v}\}^{\perp}$. Therefore the orthogonal complement to V is spanned by \mathbf{v}. Hence the operator of orthogonal projection onto V^{\perp} is given by $P_{V^{\perp}}(\mathbf{x})=\frac{\langle\mathbf{x}, \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle} \mathbf{v}$.
Then the operator of orthogonal projection onto V is $P_{V}=\mathcal{I}-P_{V \perp}$, where \mathcal{I} is the identity map.
For any vector $\mathbf{w}=(x, y, z) \in \mathbb{R}^{3}$ we obtain

$$
\begin{gathered}
P_{V}(\mathbf{w})=\mathbf{w}-\frac{\langle\mathbf{w}, \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle} \mathbf{v}=(x, y, z)-\frac{x-2 y+z}{6}(1,-2,1) \\
=\frac{1}{6}(5 x+2 y-z, 2 x+2 y+2 z,-x+2 y+5 z) .
\end{gathered}
$$

Matrix of P_{V} relative to the standard basis: $\frac{1}{6}\left(\begin{array}{rrr}5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5\end{array}\right)$.

Example. $\quad W=$ the space of all 2π-periodic, piecewise continuous functions $f: \mathbb{R} \rightarrow \mathbb{C}$.
$V=$ the subspace spanned by $2 n+1$ functions
$h_{-n}, h_{-n+1}, \ldots, h_{-1}, h_{0}, h_{1}, \ldots, h_{n-1}, h_{n}$, where $h_{k}(x)=e^{i k x}$.
Inner product: $\langle f, g\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x$.
The functions h_{k} form an orthonormal basis for V. The projection $g=P_{V}(f)$ is a partial sum of the Fourier series of the function f :
$g(x)=\sum_{k=-n}^{n} c_{k} e^{i k x}$, where $c_{k}=\left\langle f, h_{k}\right\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) e^{-i k y} d y$.
It provides the best approximation of f by functions from V relative to the distance

$$
\operatorname{dist}(f, g)=\|f-g\|=\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)-g(x)|^{2} d x\right)^{1 / 2}
$$

Left graph: Function $f \in W$ such that $f(x)=2 x$ for $|x|<\pi$.
Right graph: Projection $P_{V}(f)$ in the case $n=12$.

