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Lecture 36:
Operator of orthogonal projection.



Operator of orthogonal projection

Let W be an inner product space and V be a subspace such
that V ⊕ V⊥ = W . Then we can define the operator PV of
orthogonal projection onto V . Namely, any vector x ∈ W

is uniquely represented as x = p + o, where p ∈ V and
o ∈ V⊥, and we let PV (x) = p.
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Operator of orthogonal projection

Theorem 1 PV is a linear operator.

Proof: Take any vectors x, y ∈ W . We have
x = p1 + o1 and y = p2 + o2, where p1,p2 ∈ V

and o1, o2 ∈ V⊥. Then

x + y = (p1 + p2) + (o1 + o2).

Since p1 + p2 ∈ V and o1 + o2 ∈ V⊥, it follows
that PV (x + y) = p1 + p2 = PV (x) + PV (y).

Further, for any scalar r we have rx = rp1 + ro1.
Since rp1 ∈ V and ro1 ∈ V⊥, we obtain
PV (rx) = rp1 = rPV (x).

Thus PV is a linear operator.



Operator of orthogonal projection

Theorem 2 (i) The range of PV is V , the null-space is V⊥.
(ii) PV is idempotent, which means P2

V = PV .
(iii) PV is self-adjoint.

Proof: By definition of the operator PV , it is zero when
restricted to the subspace V⊥ and the identity when restricted
to the subspace V . This implies properties (i) and (ii).

Take any vectors x, y ∈ W . We have x = p1 + o1,
y = p2 + o2, where p1,p2 ∈ V and o1, o2 ∈ V⊥. Then

〈PV (x), y〉 = 〈p1,p2 + o2〉 = 〈p1,p2〉 + 〈p1, o2〉 = 〈p1,p2〉,

〈x, PV (y)〉 = 〈p1 + o1,p2〉 = 〈p1,p2〉 + 〈o1,p2〉 = 〈p1,p2〉.

Thus 〈PV (x), y〉 = 〈x, PV (y)〉 so that PV is self-adjoint.



Let L be a linear operator on an inner product space W .

Theorem 3 Suppose L is normal and idempotent:
L◦L∗ = L∗◦L and L2 = L. Then L is an operator of
orthogonal projection.

Proof: Let V0 and V1 denote the eigenspaces of L associated
with eigenvalues 0 and 1, respectively (if 0 or 1 is not an
eigenvalue of L, the corresponding subspace is trivial). Since
L is a normal operator, it follows that V0 ⊥ V1. In particular,
V0 ∩ V1 = {0}, which implies that the sum of subspaces
V0 + V1 is direct.

For any vector x ∈ W let p = L(x) and o = x − p. Then

L(p) = L(L(x)) = L2(x) = L(x) = p,

L(o) = L(x − p) = L(x) − L(p) = p − p = 0.

That is, p ∈ V1 and o ∈ V0. Therefore V1 ⊕ V0 = W .
Since V0 ⊥ V1, it follows that V0 = V⊥

1 . Thus L is the
operator of orthogonal projection onto the subspace V1.



Example. W = R
3, V is a plane spanned by vectors

x1 = (1, 2, 2) and x2 = (0, 6, 3).

The operator of orthogonal projection onto V is given by

PV (x) =
〈x, v1〉

〈v1, v1〉
v1 +

〈x, v2〉

〈v2, v2〉
v2,

where v1, v2 is an arbitrary orthogonal basis for V . To get
one, we apply the Gram-Schmidt process to the basis x1, x2:

v1 = x1 = (1, 2, 2),

v2 = x2 −
〈x2, v1〉

〈v1, v1〉
v1 = (0, 6, 3) −

18

9
(1, 2, 2) = (−2, 2,−1).

Now for any vector w = (x , y , z) ∈ R
3 we obtain

PV (w) =
x + 2y + 2z

9
(1, 2, 2) +

−2x + 2y − z

9
(−2, 2,−1)

=
1

9
(5x − 2y + 4z , −2x + 8y + 2z , 4x + 2y + 5z).



Example. W = R
3, V is the plane orthogonal to the vector

v = (1,−2, 1).

By definition, V = {v}⊥. Therefore the orthogonal
complement to V is spanned by v. Hence the operator of

orthogonal projection onto V⊥ is given by PV⊥(x) =
〈x, v〉

〈v, v〉
v.

Then the operator of orthogonal projection onto V is
PV = I − PV⊥ , where I is the identity map.

For any vector w = (x , y , z) ∈ R
3 we obtain

PV (w) = w −
〈w, v〉

〈v, v〉
v = (x , y , z) −

x − 2y + z

6
(1,−2, 1)

=
1

6
(5x + 2y − z , 2x + 2y + 2z , −x + 2y + 5z).

Matrix of PV relative to the standard basis:
1

6





5 2 −1
2 2 2

−1 2 5



.



Example. W = the space of all 2π-periodic, piecewise
continuous functions f : R → C.

V = the subspace spanned by 2n + 1 functions
h−n, h−n+1, . . . , h−1, h0, h1, . . . , hn−1, hn, where hk(x) = e ikx .

Inner product: 〈f , g〉 =
1

2π

∫ π

−π

f (x)g(x) dx .

The functions hk form an orthonormal basis for V . The
projection g = PV (f ) is a partial sum of the Fourier series
of the function f :

g(x) =
n

∑

k=−n

cke
ikx , where ck =〈f , hk〉=

1

2π

∫ π

−π

f (y)e−ikydy .

It provides the best approximation of f by functions from V

relative to the distance

dist(f , g) = ‖f − g‖ =

(

1

2π

∫ π

−π

|f (x) − g(x)|2 dx

)1/2

.
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Left graph: Function f ∈ W such that f (x) = 2x
for |x | < π.

Right graph: Projection PV (f ) in the case n = 12.


