MATH 423 Linear Algebra II

Lecture 37: Jordan blocks. Jordan canonical form.

Jordan block

Definition. A Jordan block is an $n \times n$ matrix of the form

$$
J=\left(\begin{array}{cccccc}
\lambda & 1 & 0 & \cdots & 0 & 0 \\
0 & \lambda & 1 & \ddots & 0 & 0 \\
0 & 0 & \lambda & \ddots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & \lambda & 1 \\
0 & 0 & 0 & \cdots & 0 & \lambda
\end{array}\right) .
$$

Examples. (λ), $\left(\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right),\left(\begin{array}{ccc}\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{array}\right),\left(\begin{array}{cccc}\lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda\end{array}\right)$.
The Jordan block of dimensions 2×2 or higher is the simplest example of a square matrix that is not diagonalizable.

Jordan block

Definition. A Jordan block is an $n \times n$ matrix of the form

$$
J=\left(\begin{array}{cccccc}
\lambda & 1 & 0 & \cdots & 0 & 0 \\
0 & \lambda & 1 & \ddots & 0 & 0 \\
0 & 0 & \lambda & \ddots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & \lambda & 1 \\
0 & 0 & 0 & \cdots & 0 & \lambda
\end{array}\right)
$$

Characteristic polynomial: $p(t)=\operatorname{det}(J-t l)=(\lambda-t)^{n}$. Hence λ is the only eigenvalue.
It is easy to see that $J \mathbf{e}_{1}=\lambda \mathbf{e}_{1}$ so that $\mathbf{e}_{1}=(1,0, \ldots, 0)^{t}$ is an eigenvector. The consecutive columns of the matrix $J-\lambda /$ are $\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n-1}$. It follows that $\operatorname{rank}(J-\lambda I)=n-1$. Therefore the nullity of $J-\lambda /$ is 1 . Thus the only eigenspace of the matrix J is the line spanned by \mathbf{e}_{1}.

Jordan canonical form

Definition. A square matrix B is in the Jordan canonical form if it has diagonal block structure

$$
B=\left(\begin{array}{cccc}
J_{1} & O & \ldots & O \\
O & J_{2} & \ldots & O \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \ldots & J_{k}
\end{array}\right),
$$

where each diagonal block J_{i} is a Jordan block.
The matrix B is called the Jordan canonical form (or Jordan normal form) of a square matrix A if A is similar to B, i.e., $A=U B U^{-1}$ for some invertible matrix U.

Note that a diagonal matrix is a special case of the Jordan canonical form.

Jordan canonical basis

Suppose B is a square matrix in the Jordan canonical form.
Given a linear operator $L: V \rightarrow V$ on a finite-dimensional vector space V, the matrix B is called the Jordan canonical form of L if B is the matrix of this operator relative to some basis β for $V, B=[L]_{\beta}$. The basis β is then called the Jordan canonical basis for L.

Let A be an $n \times n$ matrix and L_{A} denote an operator on \mathbb{F}^{n} given by $L_{A}(\mathbf{x})=A \mathbf{x}$. Then the Jordan canonical basis of L_{A} is called the Jordan canonical basis of A.

Note that a basis of eigenvectors is a special case of the Jordan canonical basis.

Let A be an $n \times n$ matrix such that the characteristic polynomial of A splits down to linear factors, i.e.,

$$
\operatorname{det}(A-t l)=\left(\lambda_{1}-t\right)\left(\lambda_{2}-t\right) \ldots\left(\lambda_{n}-t\right)
$$

Theorem 1 Under the above assumption, the matrix A admits a Jordan canonical form.

Corollary If L is a linear operator on a finite-dimensional vector space such that the characteristic polynomial of L splits into linear factors, then L admits a Jordan canonical basis.

Theorem 2 Two matrices in Jordan canonical form are similar if and only if they coincide up to rearranging their Jordan blocks.

Corollary If a matrix or an operator admits a Jordan canonical form, then this form is unique up to rearranging the Jordan blocks.

Examples. $B_{1}=\left(\begin{array}{llllll}2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3\end{array}\right)$,
$B_{2}=\left(\begin{array}{llllll}3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3\end{array}\right), \quad B_{3}=\left(\begin{array}{llllll}2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3\end{array}\right)$.
All three matrices are in Jordan canonical form. Matrices B_{1} and B_{2} coincide up to rearranging their Jordan blocks. The matrix B_{3} is essentially different.

Consider an $n \times n$ Jordan block

$$
J=\left(\begin{array}{cccccc}
\lambda & 1 & 0 & \cdots & 0 & 0 \\
0 & \lambda & 1 & \ddots & 0 & 0 \\
0 & 0 & \lambda & \ddots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & \lambda & 1 \\
0 & 0 & 0 & \cdots & 0 & \lambda
\end{array}\right)
$$

We already know that $J \mathbf{e}_{1}=\lambda \mathbf{e}_{1}$ or, equivalently, $(J-\lambda I) \mathbf{e}_{1}=\mathbf{0}$.
Then $(J-\lambda I) \mathbf{e}_{2}=\mathbf{e}_{1} \Longrightarrow(J-\lambda I)^{2} \mathbf{e}_{2}=\mathbf{0}$.
Next, $(J-\lambda I) \mathbf{e}_{3}=\mathbf{e}_{2} \Longrightarrow(J-\lambda I)^{3} \mathbf{e}_{3}=\mathbf{0}$.
In general, $(J-\lambda I) \mathbf{e}_{k}=\mathbf{e}_{k-1}$ and $(J-\lambda I)^{k} \mathbf{e}_{k}=\mathbf{0}$.
Hence multiplication by $J-\lambda /$ acts on the standard basis by a chain rule:

$$
\stackrel{\mathbf{0}}{\circ} \longleftarrow \stackrel{\mathbf{e}_{1}}{\bullet} \longleftarrow \stackrel{\mathbf{e}_{2}}{\bullet} \longleftarrow \cdots{ }^{\bullet} \longleftarrow \stackrel{\mathbf{e}_{n-1}}{\bullet} \longleftarrow \stackrel{\mathbf{e}_{n}}{\bullet}
$$

Example. $B_{1}=\left(\begin{array}{llllll}2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3\end{array}\right)$,

Multiplication by $B_{1}-2 I$:

$$
\begin{aligned}
& \mathbf{0} \\
& 0 \\
& \leftarrow
\end{aligned} \mathbf{e}_{1} \longleftarrow \stackrel{\mathbf{e}_{2}}{\bullet}
$$

Multiplication by $B_{1}-3 I$:

