MATH 423
Linear Algebra Il

Lecture 39:
Review for the final exam.



Topics for the final exam

Vector spaces (F/I/S 1.1-1.7, 2.2, 2.4)

e Vector spaces: axioms and basic properties

e Basic examples of vector spaces (coordinate vectors,
matrices, polynomials, functional spaces)

e Subspaces

e Span, spanning set

e Linear independence

e Basis and dimension

e Various characterizations of a basis

e Basis and coordinates

e Change of coordinates, transition matrix



Topics for the final exam

Linear transformations (F/l/S 2.1-2.5)

Linear transformations: definition and basic properties
Linear transformations: basic examples

Vector space of linear transformations

Range and null-space of a linear map

Matrix of a linear transformation

Matrix algebra and composition of linear maps
Characterization of linear maps from F” to F™
Change of coordinates for a linear operator
Isomorphism of vector spaces



Topics for the final exam

Elementary row operations (F/I/S 3.1-3.4)

Elementary row operations
Reduced row echelon form

Solving systems of linear equations
Computing the inverse matrix

Determinants (F/I/S 4.1-4.5)

Definition for 2x2 and 3x3 matrices
Properties of determinants

Row and column expansions
Evaluation of determinants



Topics for the final exam

Eigenvalues and eigenvectors (F/I/S 5.1-5.4)

Eigenvalues, eigenvectors, eigenspaces
Characteristic polynomial
Diagonalization, basis of eigenvectors
Matrix polynomials

Cayley-Hamilton Theorem

Jordan canonical form (F/1/S 7.1-7.2)

Jordan blocks

Jordan canonical form
Generalized eigenvectors
Jordan canonical basis



Topics for the final exam

Orthogonality (F/I/S 6.1-6.6, 6.11)

Norms and inner products
Orthogonal sets

Orthogonal complement

Orthogonal projection

The Gram-Schmidt orthogonalization process
Adjoint operator

Normal operators, normal matrices
Diagonalization of normal operators
Special classes of normal operators
Classification of orthogonal matrices
Rigid motions, rotations in space



Sample problems for the final

Problem 1 (15 pts.) Find a quadratic polynomial
p(x) such that p(—1) = p(3) =6 and
¥(2) = p(1).

Problem 2 (20 pts.) Consider a linear
transformation L : R> — R? given by

L(x1, X2, X3, X4, X5) = (X1 + X3 + X5, 2X1 — X2 + Xg).

Find a basis for the null-space of L, then extend it
to a basis for R>,



Sample problems for the final

Problem 3 (20 pts.) Let v; =(1,1,1),

vo =(1,1,0), and v3 =(1,0,1). Let

T :R3 — R3 be a linear operator on R3 such that
T(v1) = vy, T(v2) =v3, T(v3)=v;. Find the
matrix of the operator T relative to the standard
basis.

Problem 4 (20 pts.) Let R:R3 — R3? be the
operator of orthogonal reflection in the plane 1
spanned by vectors u; = (1,0, —1) and

u; = (1,—1,3). Find the image of the vector

u = (2,3,4) under this operator.



Sample problems for the final

Problem 5 (25 pts.) Consider the vector space
W of all polynomials of degree at most 3 in
variables x and y with real coefficients. Let D be a

0
linear operator on W given by D(p) = 8_p for any
X

p € W. Find the Jordan canonical form of the
operator D.

Bonus Problem 6 (15 pts.) An upper triangular
matrix is called unipotent if all diagonal entries are
equal to 1. Prove that the inverse of a unipotent
matrix is also unipotent.



Problem 1. Find a quadratic polynomial p(x) such that
p(—1) = p(3) =6 and p'(2) = p(1).

Let p(x) =a+ bx+cx®>. Then p(—1)=a—b+c,
p(l)=a+b+c, and p(3) =a+3b+9c. Also,
p'(x) = b+ 2cx so that p'(2) = b+ 4c.

The coefficients a, b, and ¢ are to be chosen so that

a—b+c=6, a—b+c=06,
a+3b+9c =6, — a+3b+9c =6,
b+4c=a+b+c a—3c=0.

This is a system of linear equations in variables a, b,c. To
solve it, we convert the augmented matrix to reduced row
echelon form.

1 -1 116
Augmented matrix: 1 3 9/6

1 0 =310



1 -1 116 1 0 -3|0 1
1 3 96| —~-|1 -1 16| —>1{0
1 0 =30 1 3 916 1
1 0 =30 1 0 -3]0
-0 -1 4/6]—-({0 -1 4|6 | —
0 3 12|6 0 0 24|24
10 -3] 0 10 -3] 0
({01 -4,-6] =101 0]-2| —
00 15 1 00 1| 1

Solution of the system: a=3, b= -2, c=1.
Desired polynomial: p(x) = x? — 2x + 3.




Problem 2. Consider a linear transformation L : R> — R?
given by L(x1,x2, X3, Xa, X5) = (X1 + X3 + X5, 2x1 — X2 + Xq).
Find a basis for the null-space of L, then extend it to a basis
for R,

The null-space N'(L) consists of all vectors x € R® such that
L(x) = 0. This is the solution set of the following systems of
linear equations:

x1+x3+x5=0 x1+x3+x5 =0
2X1—X2+X4:0 —X2—2X3+X4—2X5:0

x1+x3+x5=0 X1 = —X3 — X5
Xo +2x3 — X3 + 2x5 = 0 Xo = —2x3 + X4 — 2X5

General solution:
x=(—t; — t3, =2t + tp — 23, ty, o, t3)
=t;(—1,-2,1,0,0) + ,(0,1,0,1,0) + t3(—1,—2,0,0, 1),

where ti1, b, 3 € R.



We obtain that the null-space A/(L) is spanned by vectors
Vi = (_17 _27 ]-7 07 0)1 Vo = (07 ]-, 0, 1, 0), and
V3 = (_17 _27 07 07 ]-)

These vectors are linearly independent (check out the last
three coordinates), hence they form a basis for A/(L).

To extend the basis for N/(L) to a basis for R®, we need two

more vectors. We can use some two vectors from the standard
basis. For example, the vectors vi,v,, vz, e;, e, form a basis

for R®. To verify this, we show that a 5x5 matrix with these
vectors as columns has a nonzero determinant:

-1 0 -110 10 -10 —-1

-2 1 -2 01 01 -2 1 =2
10 00O0|=|/00 10 O0]=1
01 000 00 01 O
00 100 00 00 1




Problem 3. Let v; =(1,1,1), v, = (1,1,0), and

v3 =(1,0,1). Let T:R3>— R3? be a linear operator on R?
such that T(vi) = vy, T(vp) =v3, T(v3) =v;. Find the
matrix of the operator T relative to the standard basis.

Let U be a 3x3 matrix such that its columns are vectors
Vi, Vo, V3! 1 1 1
U=1[1 120
1 01

To determine whether vy, vs, v is a basis for R3, we find the
determinant of U:

111 0 01 11
detU=|1 1 0| =|110 :‘1 0':—1.
1 01 1 01

Since det U # 0, the vectors vy, vy, v3 are linearly
independent. Therefore they form a basis for R3. It follows
that the operator T is defined well and uniquely.



The matrix of the operator T relative to the basis vi,v,,v3 is

0 01
B=1100
010

Since U is the transition matrix from vy, v, v3 to the
standard basis, the matrix of T relative to the standard basis
is A= UBU™".

To find the inverse U™, we merge the matrix U with the
identity matrix / into one 3x6 matrix and apply row
reduction to convert the left half U of this matrix into /.
Simultaneously, the right half / will be converted into U~!.

111100 11 1) 1
1 00 1 0f -0 0 —-1|-—
1

Wwn=1_11 1
01/0 0 1 10 1] 0
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10
01
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Problem 4. Let R:R3 — R3 be the operator of orthogonal
reflection in the plane I spanned by vectors u; = (1,0, —1)
and uy = (1,—1,3). Find the image of the vector

u = (2,3,4) under this operator.

By definition of the orthogonal reflection, R(x) = x for any
vector x € [1 and R(y) = —y for any vector y orthogonal to
the plane 1.

The vector u is uniquely decomposed as u = p + 0, where
pcll and o< . Then

R(u) = R(p +0) = R(p) + R(o) = p —o.
The component p is the orthogonal projection of the vector u
onto the plane . We can compute it using the formula
~ {u,vy) (u, vy)
(v, v) ' (v2,v2)

in which vy, v, is an arbitrary orthogonal basis for [1.

Vo,



To get an orthogonal basis for I1, we apply the Gram-Schmidt
process to the basis u; = (1,0, —1), uy = (1,-1,3):

Vi =up = (1a07 _1)1

—(1,-1,3)— _72(1,0, “1)=(2,-1,2).

Y ) (uw)
U,V]_ u, vo
= vy + v
<V1>V1> ' <V2,V2> ?
-2 9

Then o=u—p=(1,4,1).
Finally, R(u) =p — o0 =(0,-5,2).



Problem 5. Consider the vector space W of all polynomials
of degree at most 3 in variables x and y with real coefficients.

0
Let D be a linear operator on W given by D(p) = 8_p for any
X
p € W. Find the Jordan canonical form of the operator D.

The vector space W is 10-dimensional. It has a basis of
monomials: 1,x,y,x2 xy, y% x3,x%y, xy?, y3.

Note that D(x™yk) = mx™1y* if m >0 and D(x™y*) =0
otherwise. It follows that the operator D* maps each
monomial to zero, which implies that this operator is
identically zero. As a consequence, 0 is the only eigenvalue of
the operator D.

To determine the Jordan canonical form of D, we need to
determine the null-spaces of its iterations.



Indeed, dim N (D) is the total number of Jordan blocks in the
Jordan canonical form of D. Further, dim N/ (D?) —dim A/(D)
is the number of Jordan blocks of dimensions at least 2x2,
dim A (D3?) — dim N'(D?) is the number of Jordan blocks of
dimensions at least 3x3, and so on...

The null-space N(D) is 4-dimensional, it is spanned by
1,y,y% ¥ The null-space N(D?) is 7-dimensional, it is
spanned by 1,y,y? y3 x,xy,xy? The null-space N'(D?3) is
9-dimensional, it is spanned by 1,y,y? y3 x, xy, xy?, x?, x%y.
The null-space N'(D*) is 10-dimensional.

Therefore the Jordan canonical form of D contains one Jordan
block of dimensions 1x1, 2x2, 3x3, 4x4.



Jordan canonical form of the operator D:

000O0O0OOOOD®
00100O0O0O0OO0DO
000O0O0OOOODP
000O01O0O0O0OO0ODP

000O0O01O0O0O0TO

000O0O0OOOODQO
000O0O0O0OOT1IO0P

0000O0O0OO0OO0OT1DQO0

000O0O0O0OO0OOO0OT1

000O0O0OOOOOD®




Bonus Problem 6. An upper triangular matrix is called
unipotent if all diagonal entries are equal to 1. Prove that the
inverse of a unipotent matrix is also unipotent.

Let U denote the class of elementary row operations that add
a scalar multiple of row #i to row #j, where i and j satisfy
J <. ltis easy to see that such an operation transforms a
unipotent matrix into another unipotent matrix.

It remains to observe that any unipotent matrix A (which is in
row echelon form) can be converted into the identity matrix /
(which is its reduced row echelon form) by applying only
operations from the class /. Now the same sequence of
elementary row operations converts / into the inverse matrix
A~1. Since the identity matrix is unipotent, so is A~



