
MATH 423

Linear Algebra II

Lecture 39:
Review for the final exam.



Topics for the final exam

Vector spaces (F/I/S 1.1–1.7, 2.2, 2.4)

• Vector spaces: axioms and basic properties

• Basic examples of vector spaces (coordinate vectors,
matrices, polynomials, functional spaces)

• Subspaces

• Span, spanning set

• Linear independence

• Basis and dimension

• Various characterizations of a basis

• Basis and coordinates

• Change of coordinates, transition matrix



Topics for the final exam

Linear transformations (F/I/S 2.1–2.5)

• Linear transformations: definition and basic properties

• Linear transformations: basic examples

• Vector space of linear transformations

• Range and null-space of a linear map

• Matrix of a linear transformation

• Matrix algebra and composition of linear maps

• Characterization of linear maps from F
n to F

m

• Change of coordinates for a linear operator

• Isomorphism of vector spaces



Topics for the final exam

Elementary row operations (F/I/S 3.1–3.4)

• Elementary row operations
• Reduced row echelon form

• Solving systems of linear equations
• Computing the inverse matrix

Determinants (F/I/S 4.1–4.5)

• Definition for 2×2 and 3×3 matrices

• Properties of determinants
• Row and column expansions

• Evaluation of determinants



Topics for the final exam

Eigenvalues and eigenvectors (F/I/S 5.1–5.4)

• Eigenvalues, eigenvectors, eigenspaces

• Characteristic polynomial
• Diagonalization, basis of eigenvectors
• Matrix polynomials

• Cayley-Hamilton Theorem

Jordan canonical form (F/I/S 7.1–7.2)

• Jordan blocks

• Jordan canonical form
• Generalized eigenvectors

• Jordan canonical basis



Topics for the final exam

Orthogonality (F/I/S 6.1–6.6, 6.11)

• Norms and inner products
• Orthogonal sets

• Orthogonal complement
• Orthogonal projection
• The Gram-Schmidt orthogonalization process

• Adjoint operator
• Normal operators, normal matrices

• Diagonalization of normal operators
• Special classes of normal operators

• Classification of orthogonal matrices
• Rigid motions, rotations in space



Sample problems for the final

Problem 1 (15 pts.) Find a quadratic polynomial

p(x) such that p(−1) = p(3) = 6 and
p′(2) = p(1).

Problem 2 (20 pts.) Consider a linear
transformation L : R5 → R

2 given by

L(x1, x2, x3, x4, x5) = (x1 + x3 + x5, 2x1 − x2 + x4).

Find a basis for the null-space of L, then extend it
to a basis for R5.



Sample problems for the final

Problem 3 (20 pts.) Let v1 = (1, 1, 1),
v2 = (1, 1, 0), and v3 = (1, 0, 1). Let

T : R3 → R
3 be a linear operator on R

3 such that
T (v1) = v2, T (v2) = v3, T (v3) = v1. Find the

matrix of the operator T relative to the standard
basis.

Problem 4 (20 pts.) Let R : R3 → R
3 be the

operator of orthogonal reflection in the plane Π

spanned by vectors u1 = (1, 0,−1) and
u2 = (1,−1, 3). Find the image of the vector

u = (2, 3, 4) under this operator.



Sample problems for the final

Problem 5 (25 pts.) Consider the vector space

W of all polynomials of degree at most 3 in
variables x and y with real coefficients. Let D be a

linear operator on W given by D(p) =
∂p

∂x
for any

p ∈ W . Find the Jordan canonical form of the
operator D.

Bonus Problem 6 (15 pts.) An upper triangular

matrix is called unipotent if all diagonal entries are
equal to 1. Prove that the inverse of a unipotent

matrix is also unipotent.



Problem 1. Find a quadratic polynomial p(x) such that
p(−1) = p(3) = 6 and p′(2) = p(1).

Let p(x) = a + bx + cx2. Then p(−1) = a − b + c,
p(1) = a + b + c, and p(3) = a + 3b + 9c. Also,
p′(x) = b + 2cx so that p′(2) = b + 4c.

The coefficients a, b, and c are to be chosen so that






a − b + c = 6,
a + 3b + 9c = 6,
b + 4c = a + b + c

⇐⇒







a − b + c = 6,
a + 3b + 9c = 6,
a − 3c = 0.

This is a system of linear equations in variables a, b, c. To
solve it, we convert the augmented matrix to reduced row
echelon form.

Augmented matrix:





1 −1 1 6
1 3 9 6
1 0 −3 0



.







1 −1 1 6
1 3 9 6
1 0 −3 0



 →





1 0 −3 0
1 −1 1 6
1 3 9 6



 →





1 0 −3 0
0 −1 4 6
1 3 9 6





→





1 0 −3 0
0 −1 4 6
0 3 12 6



 →





1 0 −3 0
0 −1 4 6
0 0 24 24



 →





1 0 −3 0
0 −1 4 6
0 0 1 1





→





1 0 −3 0
0 1 −4 −6
0 0 1 1



 →





1 0 −3 0
0 1 0 −2
0 0 1 1



 →





1 0 0 3
0 1 0 −2
0 0 1 1



.

Solution of the system: a = 3, b = −2, c = 1.

Desired polynomial: p(x) = x2 − 2x + 3.



Problem 2. Consider a linear transformation L : R5 → R
2

given by L(x1, x2, x3, x4, x5) = (x1 + x3 + x5, 2x1 − x2 + x4).
Find a basis for the null-space of L, then extend it to a basis
for R5.

The null-space N (L) consists of all vectors x ∈ R
5 such that

L(x) = 0. This is the solution set of the following systems of
linear equations:
{

x1 + x3 + x5 = 0
2x1 − x2 + x4 = 0

⇐⇒

{

x1 + x3 + x5 = 0
−x2 − 2x3 + x4 − 2x5 = 0

⇐⇒

{

x1 + x3 + x5 = 0
x2 + 2x3 − x4 + 2x5 = 0

⇐⇒

{

x1 = −x3 − x5
x2 = −2x3 + x4 − 2x5

General solution:

x = (−t1 − t3,−2t1 + t2 − 2t3, t1, t2, t3)

= t1(−1,−2, 1, 0, 0) + t2(0, 1, 0, 1, 0) + t3(−1,−2, 0, 0, 1),

where t1, t2, t3 ∈ R.



We obtain that the null-space N (L) is spanned by vectors
v1 = (−1,−2, 1, 0, 0), v2 = (0, 1, 0, 1, 0), and
v3 = (−1,−2, 0, 0, 1).

These vectors are linearly independent (check out the last
three coordinates), hence they form a basis for N (L).

To extend the basis for N (L) to a basis for R5, we need two
more vectors. We can use some two vectors from the standard
basis. For example, the vectors v1, v2, v3, e1, e2 form a basis
for R5. To verify this, we show that a 5×5 matrix with these
vectors as columns has a nonzero determinant:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1 0 −1 1 0
−2 1 −2 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 −1 0 −1
0 1 −2 1 −2
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 1.



Problem 3. Let v1 = (1, 1, 1), v2 = (1, 1, 0), and
v3 = (1, 0, 1). Let T : R3 → R

3 be a linear operator on R
3

such that T (v1) = v2, T (v2) = v3, T (v3) = v1. Find the
matrix of the operator T relative to the standard basis.

Let U be a 3×3 matrix such that its columns are vectors
v1, v2, v3:

U =





1 1 1
1 1 0
1 0 1



.

To determine whether v1, v2, v3 is a basis for R3, we find the
determinant of U:

detU =

∣

∣

∣

∣

∣

∣

1 1 1
1 1 0
1 0 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

0 0 1
1 1 0
1 0 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1 1
1 0

∣

∣

∣

∣

= −1.

Since detU 6= 0, the vectors v1, v2, v3 are linearly
independent. Therefore they form a basis for R3. It follows
that the operator T is defined well and uniquely.



The matrix of the operator T relative to the basis v1, v2, v3 is

B =





0 0 1
1 0 0
0 1 0



.

Since U is the transition matrix from v1, v2, v3 to the
standard basis, the matrix of T relative to the standard basis
is A = UBU−1.

To find the inverse U−1, we merge the matrix U with the
identity matrix I into one 3×6 matrix and apply row
reduction to convert the left half U of this matrix into I .
Simultaneously, the right half I will be converted into U−1.

(U|I ) =





1 1 1 1 0 0
1 1 0 0 1 0
1 0 1 0 0 1



 →





1 1 1 1 0 0
0 0 −1 −1 1 0
1 0 1 0 0 1







→





1 1 1 1 0 0
0 0 −1 −1 1 0
0 −1 0 −1 0 1



 →





1 1 1 1 0 0
0 −1 0 −1 0 1
0 0 −1 −1 1 0





→





1 1 0 0 1 0
0 −1 0 −1 0 1
0 0 −1 −1 1 0



 →





1 0 0 −1 1 1
0 −1 0 −1 0 1
0 0 −1 −1 1 0





→





1 0 0 −1 1 1
0 1 0 1 0 −1
0 0 1 1 −1 0



 = (I |U−1).

A = UBU−1 =





1 1 1
1 1 0
1 0 1









0 0 1
1 0 0
0 1 0









−1 1 1
1 0 −1
1 −1 0





=





1 1 1
1 0 1
0 1 1









−1 1 1
1 0 −1
1 −1 0



 =





1 0 0
0 0 1
2 −1 −1



.



Problem 4. Let R : R3 → R
3 be the operator of orthogonal

reflection in the plane Π spanned by vectors u1 = (1, 0,−1)
and u2 = (1,−1, 3). Find the image of the vector
u = (2, 3, 4) under this operator.

By definition of the orthogonal reflection, R(x) = x for any
vector x ∈ Π and R(y) = −y for any vector y orthogonal to
the plane Π.

The vector u is uniquely decomposed as u = p+ o, where
p ∈ Π and o ∈ Π⊥. Then

R(u) = R(p+ o) = R(p) + R(o) = p− o.

The component p is the orthogonal projection of the vector u
onto the plane Π. We can compute it using the formula

p =
〈u, v1〉

〈v1, v1〉
v1 +

〈u, v2〉

〈v2, v2〉
v2,

in which v1, v2 is an arbitrary orthogonal basis for Π.



To get an orthogonal basis for Π, we apply the Gram-Schmidt
process to the basis u1 = (1, 0,−1), u2 = (1,−1, 3):

v1 = u1 = (1, 0,−1),

v2 = u2 −
〈u2, v1〉

〈v1, v1〉
v1

= (1,−1, 3)−
−2

2
(1, 0,−1) = (2,−1, 2).

Now

p =
〈u, v1〉

〈v1, v1〉
v1 +

〈u, v2〉

〈v2, v2〉
v2

=
−2

2
(1, 0,−1) +

9

9
(2,−1, 2) = (1,−1, 3).

Then o = u− p = (1, 4, 1).

Finally, R(u) = p− o = (0,−5, 2).



Problem 5. Consider the vector space W of all polynomials
of degree at most 3 in variables x and y with real coefficients.

Let D be a linear operator on W given by D(p) =
∂p

∂x
for any

p ∈ W . Find the Jordan canonical form of the operator D.

The vector space W is 10-dimensional. It has a basis of
monomials: 1, x , y , x2, xy , y 2, x3, x2y , xy 2, y 3.

Note that D(xmy k) = mxm−1y k if m > 0 and D(xmy k) = 0
otherwise. It follows that the operator D4 maps each
monomial to zero, which implies that this operator is
identically zero. As a consequence, 0 is the only eigenvalue of
the operator D.

To determine the Jordan canonical form of D, we need to
determine the null-spaces of its iterations.



Indeed, dimN (D) is the total number of Jordan blocks in the
Jordan canonical form of D. Further, dimN (D2)−dimN (D)
is the number of Jordan blocks of dimensions at least 2×2,
dimN (D3)− dimN (D2) is the number of Jordan blocks of
dimensions at least 3×3, and so on. . .

The null-space N (D) is 4-dimensional, it is spanned by
1, y , y 2, y 3. The null-space N (D2) is 7-dimensional, it is
spanned by 1, y , y 2, y 3, x , xy , xy 2. The null-space N (D3) is
9-dimensional, it is spanned by 1, y , y 2, y 3, x , xy , xy 2, x2, x2y .
The null-space N (D4) is 10-dimensional.

Therefore the Jordan canonical form of D contains one Jordan
block of dimensions 1×1, 2×2, 3×3, 4×4.



Jordan canonical form of the operator D:






























0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0































.



Bonus Problem 6. An upper triangular matrix is called
unipotent if all diagonal entries are equal to 1. Prove that the
inverse of a unipotent matrix is also unipotent.

Let U denote the class of elementary row operations that add
a scalar multiple of row #i to row #j , where i and j satisfy
j < i . It is easy to see that such an operation transforms a
unipotent matrix into another unipotent matrix.

It remains to observe that any unipotent matrix A (which is in
row echelon form) can be converted into the identity matrix I
(which is its reduced row echelon form) by applying only
operations from the class U . Now the same sequence of
elementary row operations converts I into the inverse matrix
A−1. Since the identity matrix is unipotent, so is A−1.


