Quiz 1: Solution

Problem. Let V be a subspace of \mathbb{R}^{4} spanned by the vectors $\mathbf{x}_{1}=(1,2,2,0), \mathbf{x}_{2}=(1,-2,-3,2)$, and $\mathbf{x}_{3}=(-1,0,5,-1)$.
(i) Find an orthogonal basis for V.

Let us apply the Gram-Schmidt orthogonalization process to the spanning set $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$. If this set is a basis for V (i.e., if the vectors are linearly independent), the process will yield an orthogonal basis for V. Otherwise the process will produce the zero vector at some point. We obtain

$$
\begin{gathered}
\mathbf{v}_{1}=\mathbf{x}_{1}=(1,2,2,0), \quad \mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=(1,-2,-3,2)-\frac{-9}{9}(1,2,2,0)=(2,0,-1,2), \\
\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}=(-1,0,5,-1)-\frac{9}{9}(1,2,2,0)-\frac{-9}{9}(2,0,-1,2)=(0,-2,2,1) .
\end{gathered}
$$

Thus $\mathbf{v}_{1}=(1,2,2,0), \mathbf{v}_{2}=(2,0,-1,2), \mathbf{v}_{3}=(0,-2,2,1)$ is an orthogonal basis for V.
(ii) Find the distance from the point $\mathbf{y}=(0,9,0,9)$ to the subspace V.

The vector \mathbf{y} is uniquely represented as $\mathbf{y}=\mathbf{p}+\mathbf{o}$, where $\mathbf{p} \in V$ and \mathbf{o} is orthogonal to V. The vector \mathbf{p} is the orthogonal projection of \mathbf{y} onto the subspace V. Therefore the distance from the point \mathbf{y} to V equals $\|\mathbf{y}-\mathbf{p}\|=\|\mathbf{o}\|$.

The orthogonal projection \mathbf{p} of the vector \mathbf{y} onto the subspace V is easily computed when we have an orthogonal basis for V. Using the orthogonal basis $\mathbf{v}_{1}=(1,2,2,0), \mathbf{v}_{2}=(2,0,-1,2), \mathbf{v}_{3}=(0,-2,2,1)$ obtained earlier, we get

$$
\begin{gathered}
\mathbf{p}=\frac{\mathbf{y} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}+\frac{\mathbf{y} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}+\frac{\mathbf{y} \cdot \mathbf{v}_{3}}{\mathbf{v}_{3} \cdot \mathbf{v}_{3}} \mathbf{v}_{3}= \\
=\frac{18}{9}(1,2,2,0)+\frac{18}{9}(2,0,-1,2)+\frac{-9}{9}(0,-2,2,1)=(6,6,0,3) .
\end{gathered}
$$

Consequently, $\mathbf{o}=\mathbf{y}-\mathbf{p}=(0,9,0,9)-(6,6,0,3)=(-6,3,0,6)$. Thus the distance from \mathbf{y} to the subspace V equals $\|\mathbf{o}\|=9$.

