Quiz 2: Solutions

Problem 1. Let A be a square matrix with real entries. Suppose that A is both skew-symmetric and orthogonal. Show that A has no eigenvalues other than i and $-i$. Section 200 students, also show that i and $-i$ are indeed eigenvalues of the matrix A.

Since the matrix A is skew-symmetric, all eigenvalues of A are purely imaginary. Since A is orthogonal, all eigenvalues are of absolute value 1 . The only purely imaginary numbers of absolute value 1 are i and $-i$.

Any matrix with complex entries has at least one eigenvalue. By the above i or $-i$ is an eigenvalue of the matrix A. Since A has real entries, any nonreal eigenvalue λ of this matrix should be accompanied by the complex conjugate eigenvalue $\bar{\lambda}$. Therefore both i and $-i$ are eigenvalues of A.

Problem 2. Consider a linear operator $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $L(x, y)=(x-2 y, 2 x+y)$ for all $(x, y) \in \mathbb{R}^{2}$. Is L self-adjoint? Is L normal? Explain. (The inner product on \mathbb{R}^{2} is the dot product.)

The matrix of the linear operator L relative to the standard basis is

$$
A=\left(\begin{array}{rr}
1 & -2 \\
2 & 1
\end{array}\right)
$$

Clearly, A is not symmetric as $A \neq A^{*}$. On the other hand, one can easily check that $A A^{*}=A^{*} A=5 I$, in particular, A is normal. Since the standard basis is orthonormal, it follows that the operator L is normal, but not self-adjoint.

