Quiz 3: Solution

Problem. Let R denote a linear operator on \mathbb{R}^{3} that acts on vectors from the standard basis as follows: $R\left(\mathbf{e}_{1}\right)=\mathbf{e}_{3}, R\left(\mathbf{e}_{2}\right)=\mathbf{e}_{1}, R\left(\mathbf{e}_{3}\right)=\mathbf{e}_{2}$.
(i) Is R a rotation about an axis? Is R a reflection in a plane? Explain your answers.
(ii) If R is a rotation, find the axis and the angle. If R is a reflection, find the plane. If R is neither rotation nor reflection, describe the action of R in geometric terms.

The matrix of the operator R (relative to the standard basis) is

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

This matrix is orthogonal. Therefore R is a rigid motion. According to the classification, R is either a rotation about an axis, or a reflection in a plane, or the composition of two. Since $\operatorname{det} A=1>0, R$ is a rotation.

As R is a rotation about an axis, the matrix A is similar to

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right),
$$

where ϕ is the angle of rotation. Similar matrices have the same trace (since similar matrices have the same characteristic polynomial and the trace is one of its coefficients). The trace of A is 0 . Hence $1+2 \cos \phi=0$. Then $\cos \phi=-1 / 2$ so that $\phi=2 \pi / 3$.

The axis of the rotation R is the set of all points fixed by R. For any vector $(x, y, z) \in \mathbb{R}^{3}$ we have

$$
R(x, y, z)=R\left(x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}\right)=x R\left(\mathbf{e}_{1}\right)+y R\left(\mathbf{e}_{2}\right)+z R\left(\mathbf{e}_{3}\right)=x \mathbf{e}_{3}+y \mathbf{e}_{1}+z \mathbf{e}_{2}=(y, z, x) .
$$

Therefore $R(x, y, z)=(x, y, z)$ if and only if $x=y=z$. Thus the axis of the rotation is the line spanned by the vector $(1,1,1)$.

