## Sample problems for Test 1

## Any problem may be altered or replaced by a different one!

Problem 1 ( 20 pts.$) ~ L e t ~ \mathcal{P}_{3}$ be the vector space of all polynomials (with real coefficients) of degree at most 3. Determine which of the following subsets of $\mathcal{P}_{3}$ are subspaces. Briefly explain.
(i) The set $S_{1}$ of polynomials $p(x) \in \mathcal{P}_{3}$ such that $p(0)=0$.
(ii) The set $S_{2}$ of polynomials $p(x) \in \mathcal{P}_{3}$ such that $p(0)=0$ and $p(1)=0$.
(iii) The set $S_{3}$ of polynomials $p(x) \in \mathcal{P}_{3}$ such that $p(0)=0$ or $p(1)=0$.
(iv) The set $S_{4}$ of polynomials $p(x) \in \mathcal{P}_{3}$ such that $(p(0))^{2}+2(p(1))^{2}+(p(2))^{2}=0$.

Problem 2 (20 pts.) Let $V$ be a subspace of $\mathcal{F}(\mathbb{R})$ spanned by functions $e^{x}$ and $e^{-x}$. Let $L$ be a linear operator on $V$ such that

$$
\left(\begin{array}{rr}
2 & -1 \\
-3 & 2
\end{array}\right)
$$

is the matrix of $L$ relative to the basis $e^{x}, e^{-x}$. Find the matrix of $L$ relative to the basis $\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right), \sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)$.

Problem 3 ( 25 pts.) Suppose $V_{1}$ and $V_{2}$ are subspaces of a vector space $V$ such that $\operatorname{dim} V_{1}=5, \operatorname{dim} V_{2}=3, \operatorname{dim}\left(V_{1}+V_{2}\right)=6$. Find $\operatorname{dim}\left(V_{1} \cap V_{2}\right)$. Explain your answer.

Problem $4(25$ pts. $) \quad$ Consider a linear transformation $T: \mathcal{M}_{2,2}(\mathbb{R}) \rightarrow \mathcal{M}_{2,3}(\mathbb{R})$ given by

$$
T(A)=A\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

for all $2 \times 2$ matrices $A$. Find bases for the range and for the null-space of $T$.
Bonus Problem 5 ( $\mathbf{1 5}$ pts.) Suppose $V_{1}$ and $V_{2}$ are real vector spaces of dimension $m$ and $n$, respectively. Let $B\left(V_{1}, V_{2}\right)$ denote the subspace of $\mathcal{F}\left(V_{1} \times V_{2}\right)$ consisting of bilinear functions (i.e., functions of two variables $x \in V_{1}$ and $y \in V_{2}$ that depend linearly on each variable). Prove that $B\left(V_{1}, V_{2}\right)$ is isomorphic to $\mathcal{M}_{m, n}(\mathbb{R})$.

