
MATH 423-200/500 Spring 2012

Sample problems for Test 1: Solutions
Any problem may be altered or replaced by a different one!

Problem 1 (20 pts.) Let P3 be the vector space of all polynomials (with real coefficients)
of degree at most 3. Determine which of the following subsets of P3 are subspaces. Briefly
explain.

(i) The set S1 of polynomials p(x) ∈ P3 such that p(0) = 0.

The set S1 is not empty because it contains the zero polynomial. S1 is a subspace of P3 since it
is closed under addition and scalar multiplication.

Alternatively, S1 is a subspace since it is the null-space of a linear functional ℓ : P3 → R given by
ℓ[p(x)] = p(0).

(ii) The set S2 of polynomials p(x) ∈ P3 such that p(0) = 0 and p(1) = 0.

Let S′

1
denote the set of polynomials p(x) ∈ P3 such that p(1) = 0. The set S′

1
is a subspace of P3

for the same reason as S1. Clearly, S2 = S1 ∩ S′

1
. Now the intersection of two subspaces of P3 is also

a subspace.
Alternatively, S2 is the null-space of a linear transformation L : P3 → R

2 given by L[p(x)] =
(p(0), p(1)).

(iii) The set S3 of polynomials p(x) ∈ P3 such that p(0) = 0 or p(1) = 0.

The set S3 is not a subspace because it is not closed under addition. For example, the polynomials
p1(x) = x and p2(x) = x− 1 belong to S3 while their sum p(x) = 2x− 1 is not in S3.

(iv) The set S4 of polynomials p(x) ∈ P3 such that (p(0))2 + 2(p(1))2 + (p(2))2 = 0.

Since coefficients of a polynomial p(x) ∈ P3 are real, it belongs to S4 if and only if p(0) =
p(1) = p(2) = 0. Hence S4 is the null-space of a linear transformation L : P3 → R

3 given by
L[p(x)] = (p(0), p(1), p(2)). Thus S4 is a subspace.

Problem 2 (20 pts.) Let V be a subspace of F(R) spanned by functions ex and e−x.
Let L be a linear operator on V such that

(

2 −1
−3 2

)

is the matrix of L relative to the basis ex, e−x. Find the matrix of L relative to the basis
cosh x = 1

2
(ex + e−x), sinh x = 1

2
(ex − e−x).

Let α denote the basis ex, e−x and β denote the basis coshx, sinhx for V . Let A denote the matrix
of the operator L relative to α (which is given) and B denote the matrix of L relative to β (which is
to be found). By definition of the functions cosh x and sinhx, the transition matrix from β to α is

U =
1

2

(

1 1
1 −1

)

.

It follows that B = U−1AU . One easily checks that 2U2 = I. Hence U−1 = 2U so that

B = U−1AU =

(

1 1
1 −1

)(

2 −1
−3 2

)

·
1

2

(

1 1
1 −1

)

=

(

0 −1
1 4

)

.
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Problem 3 (25 pts.) Suppose V1 and V2 are subspaces of a vector space V such that
dimV1 = 5, dimV2 = 3, dim(V1 + V2) = 6. Find dim(V1 ∩ V2). Explain your answer.

We are going to show that dim(V1∩V2) = dimV1+dimV2−dim(V1+V2) for any finite-dimensional
subspaces V1 and V2. In our particular case this will imply that dim(V1 ∩ V2) = 2.

First we choose a basis v1,v2, . . . ,vk for the intersection V1 ∩ V2. The set S0 = {v1,v2, . . . ,vk}
is linearly independent in both V1 and V2. Therefore we can extend this set to a basis for V1 and to
a basis for V2. Let u1,u2, . . . ,um be vectors that extend S0 to a basis for V1 and w1,w2, . . . ,wn be
vectors that extend S0 to a basis for V2. It remains to show that v1, . . . ,vk,u1, . . . ,um,w1, . . . ,wn

is a basis for V1 + V2. Then dimV1 = k + m, dimV2 = k + n, dim(V1 + V2) = k + m + n, and
dim(V1 ∩ V2) = k.

By definition, the subspace V1 +V2 consists of vector sums x+y, where x ∈ V1 and y ∈ V2. Since
x is a linear combination of vectors v1, . . . ,vk,u1, . . . ,um and y is a linear combination of vectors
v1, . . . ,vk,w1, . . . ,wn, it follows that x+ y is a linear combination of vectors v1, . . . ,vk,u1, . . . ,um,
w1, . . . ,wn. Therefore these vectors span V1 + V2.

Now we prove that vectors v1, . . . ,vk,u1, . . . ,um,w1, . . . ,wn are linearly independent. Assume

r1v1 + · · ·+ rkvk + s1u1 + · · ·+ smum + t1w1 + · · ·+ tnwn = 0

for some scalars ri, sj, tl. Let x = s1u1+ · · ·+smum, y = t1w1+ · · ·+ tnwn, and z = r1v1+ · · ·+rkvk.
Then x ∈ V1, y ∈ V2, and z ∈ V1 ∩ V2. The equality x + y + z = 0 implies that x = −y − z ∈ V2

and y = −x− z ∈ V1. Hence both x and y are in V1 ∩ V2. Since v1, . . . ,vk,u1, . . . ,um is a basis for
V1 and x ∈ V1 ∩ V2, it follows that sj = 0 for 1 ≤ j ≤ m. Since v1, . . . ,vk,w1, . . . ,wn is a basis for
V2 and y ∈ V1 ∩ V2, it follows that tl = 0 for 1 ≤ l ≤ n. Now z = 0. Since v1, . . . ,vk is a basis for
V1 ∩ V2, we have ri = 0 for 1 ≤ i ≤ k. Thus the vectors v1, . . . ,vk,u1, . . . ,um,w1, . . . ,wn are linearly
independent.

Problem 4 (25 pts.) Consider a linear transformation T : M2,2(R) → M2,3(R) given by

T (A) = A

(

1 1 1
1 0 0

)

for all 2× 2 matrices A. Find bases for the range and for the null-space of T .

Let

A =

(

a b

c d

)

.

Then

T (A) =

(

a+ b a a

c+ d c c

)

= aB1 + bB2 + cB3 + dB4,

where

B1 =

(

1 1 1
0 0 0

)

, B2 =

(

1 0 0
0 0 0

)

, B3 =

(

0 0 0
1 1 1

)

, B4 =

(

0 0 0
1 0 0

)

.

Therefore the range of T is spanned by the matrices B1, B2, B3, B4. If aB1+ bB2+ cB3+ dB4 = O for
some scalars a, b, c, d ∈ R, then a+ b = a = c+ d = d = 0, which implies a = b = c = d = 0. Therefore
B1, B2, B3, B4 are linearly independent so that they form a basis for the range of T . Also, it follows
that the null-space of T is trivial. Hence the null-space has the empty basis.
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Bonus Problem 5 (15 pts.) Suppose V1 and V2 are real vector spaces of dimension
m and n, respectively. Let B(V1, V2) denote the subspace of F(V1 × V2) consisting of bilinear
functions (i.e., functions of two variables x ∈ V1 and y ∈ V2 that depend linearly on each
variable). Prove that B(V1, V2) is isomorphic to Mm,n(R).

Let α = [v1, . . . ,vm] be an ordered basis for V1 and β = [w1, . . . ,wn] be an ordered basis for V2.
For any matrix C ∈ Mm,n(R) we define a function fC : V1×V2 → R by fC(x,y) = ([x]α)

tC[y]β for all
x ∈ V1 and y ∈ V2 (here we implicitly identify R with the space of 1×1 matrices). It is easy to observe
that fC is bilinear. Moreover, the expression fC(x,y) depends linearly on C as well. This implies
that a transformation L : Mm,n(R) → B(V1, V2) given by L(C) = fC is linear. The transformation L

is one-to-one since the matrix C can be recovered from the function fC . Namely, if C = (cij), then
cij = fC(vi,wj), 1 ≤ i ≤ m, 1 ≤ j ≤ n.

It remains to show that L is onto. Take any function f ∈ B(V1, V2) and vectors x ∈ V1, y ∈ V2.
We have x = r1v1 + · · · + rmvm and y = s1w1 + · · · + snwn for some scalars ri, sj. Using bilinearity
of f , we obtain

f(x,y) = f(r1v1 + · · ·+ rmvm,y) =

m
∑

i=1

ri f(vi,y)

=

m
∑

i=1

ri f(vi, s1w1 + · · ·+ snwn) =

m
∑

i=1

n
∑

j=1

risj f(vi,wj)

= (r1, r2 . . . , rm)











f(v1,w1) f(v1,w2) . . . f(v1,wn)
f(v2,w1) f(v2,w2) . . . f(v2,wn)

...
...

. . .
...

f(vm,w1) f(vm,w2) . . . f(vm,wn)





















s1
s2
...
sn











= ([x]α)
t











f(v1,w1) f(v1,w2) . . . f(v1,wn)
f(v2,w1) f(v2,w2) . . . f(v2,wn)

...
...

. . .
...

f(vm,w1) f(vm,w2) . . . f(vm,wn)











[y]β

so that f = fC for some matrix C ∈ Mm,n(R).
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