Sample problems for Test 1: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (20 pts.$) \quad$ Let \mathcal{P}_{3} be the vector space of all polynomials (with real coefficients) of degree at most 3. Determine which of the following subsets of \mathcal{P}_{3} are subspaces. Briefly explain.
(i) The set S_{1} of polynomials $p(x) \in \mathcal{P}_{3}$ such that $p(0)=0$.

The set S_{1} is not empty because it contains the zero polynomial. S_{1} is a subspace of \mathcal{P}_{3} since it is closed under addition and scalar multiplication.

Alternatively, S_{1} is a subspace since it is the null-space of a linear functional $\ell: \mathcal{P}_{3} \rightarrow \mathbb{R}$ given by $\ell[p(x)]=p(0)$.
(ii) The set S_{2} of polynomials $p(x) \in \mathcal{P}_{3}$ such that $p(0)=0$ and $p(1)=0$.

Let S_{1}^{\prime} denote the set of polynomials $p(x) \in \mathcal{P}_{3}$ such that $p(1)=0$. The set S_{1}^{\prime} is a subspace of \mathcal{P}_{3} for the same reason as S_{1}. Clearly, $S_{2}=S_{1} \cap S_{1}^{\prime}$. Now the intersection of two subspaces of \mathcal{P}_{3} is also a subspace.

Alternatively, S_{2} is the null-space of a linear transformation $L: \mathcal{P}_{3} \rightarrow \mathbb{R}^{2}$ given by $L[p(x)]=$ ($p(0), p(1)$).
(iii) The set S_{3} of polynomials $p(x) \in \mathcal{P}_{3}$ such that $p(0)=0$ or $p(1)=0$.

The set S_{3} is not a subspace because it is not closed under addition. For example, the polynomials $p_{1}(x)=x$ and $p_{2}(x)=x-1$ belong to S_{3} while their sum $p(x)=2 x-1$ is not in S_{3}.
(iv) The set S_{4} of polynomials $p(x) \in \mathcal{P}_{3}$ such that $(p(0))^{2}+2(p(1))^{2}+(p(2))^{2}=0$.

Since coefficients of a polynomial $p(x) \in \mathcal{P}_{3}$ are real, it belongs to S_{4} if and only if $p(0)=$ $p(1)=p(2)=0$. Hence S_{4} is the null-space of a linear transformation $L: \mathcal{P}_{3} \rightarrow \mathbb{R}^{3}$ given by $L[p(x)]=(p(0), p(1), p(2))$. Thus S_{4} is a subspace.

Problem $2\left(20 \mathrm{pts}\right.$.) Let V be a subspace of $\mathcal{F}(\mathbb{R})$ spanned by functions e^{x} and e^{-x}. Let L be a linear operator on V such that

$$
\left(\begin{array}{rr}
2 & -1 \\
-3 & 2
\end{array}\right)
$$

is the matrix of L relative to the basis e^{x}, e^{-x}. Find the matrix of L relative to the basis $\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right), \sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)$.

Let α denote the basis e^{x}, e^{-x} and β denote the basis $\cosh x, \sinh x$ for V. Let A denote the matrix of the operator L relative to α (which is given) and B denote the matrix of L relative to β (which is to be found). By definition of the functions $\cosh x$ and $\sinh x$, the transition matrix from β to α is

$$
U=\frac{1}{2}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

It follows that $B=U^{-1} A U$. One easily checks that $2 U^{2}=I$. Hence $U^{-1}=2 U$ so that

$$
B=U^{-1} A U=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{rr}
2 & -1 \\
-3 & 2
\end{array}\right) \cdot \frac{1}{2}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{rr}
0 & -1 \\
1 & 4
\end{array}\right) .
$$

Problem 3 (25 pts.) Suppose V_{1} and V_{2} are subspaces of a vector space V such that $\operatorname{dim} V_{1}=5, \operatorname{dim} V_{2}=3, \operatorname{dim}\left(V_{1}+V_{2}\right)=6$. Find $\operatorname{dim}\left(V_{1} \cap V_{2}\right)$. Explain your answer.

We are going to show that $\operatorname{dim}\left(V_{1} \cap V_{2}\right)=\operatorname{dim} V_{1}+\operatorname{dim} V_{2}-\operatorname{dim}\left(V_{1}+V_{2}\right)$ for any finite-dimensional subspaces V_{1} and V_{2}. In our particular case this will imply that $\operatorname{dim}\left(V_{1} \cap V_{2}\right)=2$.

First we choose a basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ for the intersection $V_{1} \cap V_{2}$. The set $S_{0}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent in both V_{1} and V_{2}. Therefore we can extend this set to a basis for V_{1} and to a basis for V_{2}. Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m}$ be vectors that extend S_{0} to a basis for V_{1} and $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}$ be vectors that extend S_{0} to a basis for V_{2}. It remains to show that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$ is a basis for $V_{1}+V_{2}$. Then $\operatorname{dim} V_{1}=k+m, \operatorname{dim} V_{2}=k+n, \operatorname{dim}\left(V_{1}+V_{2}\right)=k+m+n$, and $\operatorname{dim}\left(V_{1} \cap V_{2}\right)=k$.

By definition, the subspace $V_{1}+V_{2}$ consists of vector sums $\mathbf{x}+\mathbf{y}$, where $\mathbf{x} \in V_{1}$ and $\mathbf{y} \in V_{2}$. Since \mathbf{x} is a linear combination of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ and \mathbf{y} is a linear combination of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$, it follows that $\mathbf{x}+\mathbf{y}$ is a linear combination of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$, $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$. Therefore these vectors span $V_{1}+V_{2}$.

Now we prove that vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$ are linearly independent. Assume

$$
r_{1} \mathbf{v}_{1}+\cdots+r_{k} \mathbf{v}_{k}+s_{1} \mathbf{u}_{1}+\cdots+s_{m} \mathbf{u}_{m}+t_{1} \mathbf{w}_{1}+\cdots+t_{n} \mathbf{w}_{n}=\mathbf{0}
$$

for some scalars r_{i}, s_{j}, t_{l}. Let $\mathbf{x}=s_{1} \mathbf{u}_{1}+\cdots+s_{m} \mathbf{u}_{m}, \mathbf{y}=t_{1} \mathbf{w}_{1}+\cdots+t_{n} \mathbf{w}_{n}$, and $\mathbf{z}=r_{1} \mathbf{v}_{1}+\cdots+r_{k} \mathbf{v}_{k}$. Then $\mathbf{x} \in V_{1}, \mathbf{y} \in V_{2}$, and $\mathbf{z} \in V_{1} \cap V_{2}$. The equality $\mathbf{x}+\mathbf{y}+\mathbf{z}=\mathbf{0}$ implies that $\mathbf{x}=-\mathbf{y}-\mathbf{z} \in V_{2}$ and $\mathbf{y}=-\mathbf{x}-\mathbf{z} \in V_{1}$. Hence both \mathbf{x} and \mathbf{y} are in $V_{1} \cap V_{2}$. Since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ is a basis for V_{1} and $\mathbf{x} \in V_{1} \cap V_{2}$, it follows that $s_{j}=0$ for $1 \leq j \leq m$. Since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$ is a basis for V_{2} and $\mathbf{y} \in V_{1} \cap V_{2}$, it follows that $t_{l}=0$ for $1 \leq l \leq n$. Now $\mathbf{z}=\mathbf{0}$. Since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a basis for $V_{1} \cap V_{2}$, we have $r_{i}=0$ for $1 \leq i \leq k$. Thus the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$ are linearly independent.

Problem 4 (25 pts.) Consider a linear transformation $T: \mathcal{M}_{2,2}(\mathbb{R}) \rightarrow \mathcal{M}_{2,3}(\mathbb{R})$ given by

$$
T(A)=A\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

for all 2×2 matrices A. Find bases for the range and for the null-space of T.
Let

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Then

$$
T(A)=\left(\begin{array}{lll}
a+b & a & a \\
c+d & c & c
\end{array}\right)=a B_{1}+b B_{2}+c B_{3}+d B_{4}
$$

where

$$
B_{1}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right), \quad B_{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad B_{3}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right), \quad B_{4}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) .
$$

Therefore the range of T is spanned by the matrices $B_{1}, B_{2}, B_{3}, B_{4}$. If $a B_{1}+b B_{2}+c B_{3}+d B_{4}=O$ for some scalars $a, b, c, d \in \mathbb{R}$, then $a+b=a=c+d=d=0$, which implies $a=b=c=d=0$. Therefore $B_{1}, B_{2}, B_{3}, B_{4}$ are linearly independent so that they form a basis for the range of T. Also, it follows that the null-space of T is trivial. Hence the null-space has the empty basis.

Bonus Problem 5 (15 pts.) Suppose V_{1} and V_{2} are real vector spaces of dimension m and n, respectively. Let $B\left(V_{1}, V_{2}\right)$ denote the subspace of $\mathcal{F}\left(V_{1} \times V_{2}\right)$ consisting of bilinear functions (i.e., functions of two variables $x \in V_{1}$ and $y \in V_{2}$ that depend linearly on each variable). Prove that $B\left(V_{1}, V_{2}\right)$ is isomorphic to $\mathcal{M}_{m, n}(\mathbb{R})$.

Let $\alpha=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right]$ be an ordered basis for V_{1} and $\beta=\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right]$ be an ordered basis for V_{2}. For any matrix $C \in \mathcal{M}_{m, n}(\mathbb{R})$ we define a function $f_{C}: V_{1} \times V_{2} \rightarrow \mathbb{R}$ by $f_{C}(\mathbf{x}, \mathbf{y})=\left([\mathbf{x}]_{\alpha}\right)^{t} C[\mathbf{y}]_{\beta}$ for all $\mathbf{x} \in V_{1}$ and $\mathbf{y} \in V_{2}$ (here we implicitly identify \mathbb{R} with the space of 1×1 matrices). It is easy to observe that f_{C} is bilinear. Moreover, the expression $f_{C}(\mathbf{x}, \mathbf{y})$ depends linearly on C as well. This implies that a transformation $L: \mathcal{M}_{m, n}(\mathbb{R}) \rightarrow B\left(V_{1}, V_{2}\right)$ given by $L(C)=f_{C}$ is linear. The transformation L is one-to-one since the matrix C can be recovered from the function f_{C}. Namely, if $C=\left(c_{i j}\right)$, then $c_{i j}=f_{C}\left(\mathbf{v}_{i}, \mathbf{w}_{j}\right), 1 \leq i \leq m, 1 \leq j \leq n$.

It remains to show that L is onto. Take any function $f \in B\left(V_{1}, V_{2}\right)$ and vectors $\mathbf{x} \in V_{1}, \mathbf{y} \in V_{2}$. We have $\mathbf{x}=r_{1} \mathbf{v}_{1}+\cdots+r_{m} \mathbf{v}_{m}$ and $\mathbf{y}=s_{1} \mathbf{w}_{1}+\cdots+s_{n} \mathbf{w}_{n}$ for some scalars r_{i}, s_{j}. Using bilinearity of f, we obtain

$$
\begin{aligned}
f(\mathbf{x}, \mathbf{y}) & =f\left(r_{1} \mathbf{v}_{1}+\cdots+r_{m} \mathbf{v}_{m}, \mathbf{y}\right)=\sum_{i=1}^{m} r_{i} f\left(\mathbf{v}_{i}, \mathbf{y}\right) \\
& =\sum_{i=1}^{m} r_{i} f\left(\mathbf{v}_{i}, s_{1} \mathbf{w}_{1}+\cdots+s_{n} \mathbf{w}_{n}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} r_{i} s_{j} f\left(\mathbf{v}_{i}, \mathbf{w}_{j}\right) \\
& =\left(r_{1}, r_{2} \ldots, r_{m}\right)\left(\begin{array}{cccc}
f\left(\mathbf{v}_{1}, \mathbf{w}_{1}\right) & f\left(\mathbf{v}_{1}, \mathbf{w}_{2}\right) & \ldots & f\left(\mathbf{v}_{1}, \mathbf{w}_{n}\right) \\
f\left(\mathbf{v}_{2}, \mathbf{w}_{1}\right) & f\left(\mathbf{v}_{2}, \mathbf{w}_{2}\right) & \ldots & f\left(\mathbf{v}_{2}, \mathbf{w}_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
f\left(\mathbf{v}_{m}, \mathbf{w}_{1}\right) & f\left(\mathbf{v}_{m}, \mathbf{w}_{2}\right) & \ldots & f\left(\mathbf{v}_{m}, \mathbf{w}_{n}\right)
\end{array}\right)\left(\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
s_{n}
\end{array}\right) \\
& =\left([\mathbf{x}]_{\alpha}\right)^{t}\left(\begin{array}{cccc}
f\left(\mathbf{v}_{1}, \mathbf{w}_{1}\right) & f\left(\mathbf{v}_{1}, \mathbf{w}_{2}\right) & \ldots & f\left(\mathbf{v}_{1}, \mathbf{w}_{n}\right) \\
f\left(\mathbf{v}_{2}, \mathbf{w}_{1}\right) & f\left(\mathbf{v}_{2}, \mathbf{w}_{2}\right) & \ldots & f\left(\mathbf{v}_{2}, \mathbf{w}_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
f\left(\mathbf{v}_{m}, \mathbf{w}_{1}\right) & f\left(\mathbf{v}_{m}, \mathbf{w}_{2}\right) & \ldots & f\left(\mathbf{v}_{m}, \mathbf{w}_{n}\right)
\end{array}\right)[\mathbf{y}]_{\beta}
\end{aligned}
$$

so that $f=f_{C}$ for some matrix $C \in \mathcal{M}_{m, n}(\mathbb{R})$.

