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Test 1: Solutions

Problem 1 (20 pts.) Determine which of the following subsets of the vector space R3

are subspaces. Briefly explain.

(i) The set S1 of vectors (x, y, z) ∈ R3 such that xyz = 0.
(ii) The set S2 of vectors (x, y, z) ∈ R3 such that x + y − z = 0.
(ii′) The set S ′

2 of vectors (x, y, z) ∈ R3 such that x + y − z = 0 and 2y − 3z = 0.
(iii) The set S3 of vectors (x, y, z) ∈ R3 such that x2 − y2 = 0.
(iv) The set S4 of vectors (x, y, z) ∈ R3 such that 2y − 3z = 0 and 2x − 3y − 1 = 0.
(iv′) The set S ′

4 of vectors (x, y, z) ∈ R3 such that ex + ez = 0.

Solution: S2 and S ′

2 are subspaces of R3, the other sets are not.

A subset of R3 is a subspace if it is closed under addition and scalar multiplication. Besides, a
subspace must not be empty.

The set S1 is the union of three planes x = 0, y = 0, and z = 0. It is not closed under addition as
the following example shows: (1, 1, 0) + (0, 0, 1) = (1, 1, 1).

S2 is a plane passing through the origin. It is easy to check that S2 is closed under addition
and scalar multiplication. Alternatively, S2 is a subspace of R3 since it is the null-space of a linear
functional ℓ : R3 → R given by ℓ(x, y, z) = x + y − z, (x, y, z) ∈ R3.

S′

2 is a subspace of R3 since it is the null-space of a linear transformation L : R3 → R2 given by

L





x
y
z



 =

(

1 1 −1
0 2 −3

)





x
y
z



 =

(

x + y − z
2y − 3z

)

for all x, y, z ∈ R.
Since x2 − y2 = (x− y)(x + y), the set S3 is the union of two planes x− y = 0 and x + y = 0. The

following example shows that S3 is not closed under addition: (1, 1, 0) + (1,−1, 0) = (2, 0, 0).
The set S4 is the intersection of two planes 2y − 3z = 0 and 2x − 3y = 1. Hence S4 is a line. One

of the planes does not pass through the origin so that S4 does not contain the zero vector. Therefore
this set is not a subspace.

Since ex > 0 for any x ∈ R, the set S′

4 is empty. The empty set is not a subspace.
Thus S2 and S′

2 are subspaces of R3 while S1, S3, S4, and S′

4 are not.

Problem 2 (25 pts.) Let W be a subspace of M2,2(R) spanned by matrices A,A2, A3, . . . ,
An, . . . , where

A =

(

−1 1
−1 0

)

.

Find a basis for W , then extend it to a basis for M2,2(R).

Solution: {A,A2} is a basis for W ; the matrices

(

1 0
0 0

)

and

(

0 1
0 0

)

extend it to a basis

for M2,2(R).

1



First we compute several powers of the matrix A:

A2 =

(

0 −1
1 −1

)

, A3 =

(

1 0
0 1

)

, A4 =

(

−1 1
−1 0

)

.

Since A3 = I, we have Ak+3 = AkA3 = Ak for any integer k > 0. It follows that A3m = I, A1+3m = A,
and A2+3m = A2 for any integer m > 0. Therefore the subspace W is spanned by the matrices A, A2,
and A3 = I. Further, we have A + A2 + A3 = O. Hence A3 = −A−A2, which implies that A and A2

span W as well. Clearly, A and A2 are linearly independent. Therefore {A, A2} is a basis for W .
The matrices

E1 =

(

1 0
0 0

)

, E2 =

(

0 1
0 0

)

, E3 =

(

0 0
1 0

)

, E4 =

(

0 0
0 1

)

form a basis for the vector space M2,2(R). Therefore we can extend the set {A, A2} to a basis
for M2,2(R) by adding two of these matrices. For example, {A, A2, E1, E2} is a basis. To verify
this, it is enough to show that the matrices A, A2, E1, E2 are linearly independent. Assume that
r1A + r2A

2 + r3E1 + r4E2 = O for some scalars r1, r2, r3, r4 ∈ R. Since

r1A + r2A
2 + r3E1 + r4E2 = r1

(

−1 1
−1 0

)

+ r2

(

0 −1
1 −1

)

+ r3

(

1 0
0 0

)

+ r4

(

0 1
0 0

)

=

(

−r1 + r3 r1 − r2 + r4

−r1 + r2 −r2

)

,

we have −r1 + r3 = r1 − r2 + r4 = −r1 + r2 = −r2 = 0. It follows that r1 = r2 = r3 = r4 = 0. Thus
A, A2, E1, E2 are linearly independent.

Problem 3 (20 pts.) Let V1, V2, and V3 be finite-dimensional vector spaces. Suppose
that L : V1 → V2 and T : V2 → V3 are linear transformations. Prove that rank(T◦L) ≤ rank(L)
and rank(T◦L) ≤ rank(T ).

Since (T◦L)(x) = T (L(x)) for any x ∈ V1, it follows that the range of the composition T◦L is
contained in the range of T : R(T◦L) ⊂ R(T ). Then dimR(T◦L) ≤ dimR(T ), that is, rank(T◦L) ≤
rank(T ).

By the Dimension Theorem, dimR(L)+dimN (L) = dimR(T◦L)+dimN (T◦L) = dimV1. Since
rank(L) = dimR(L) and rank(T◦L) = dimR(T◦L), the inequality rank(T◦L) ≤ rank(L) is equivalent
to the inequality dimN (T◦L) ≥ dimN (L). We are going to prove the latter.

Let 0i denote the zero vector in the vector space Vi, 1 ≤ i ≤ 3. If L(x) = 02 for some vector
x ∈ V1, then (T◦L)(x) = T (L(x)) = T (02), which equals 03 since the transformation T is linear. This
means that the null-space of L is contained in the null-space of T◦L: N (L) ⊂ N (T◦L). Consequently,
dimN (L) ≤ dimN (T◦L).

Problem 4 (25 pts.) The functions f1(x) = x sin x, f2(x) = x cos x, f3(x) = sin x, and
f4(x) = cos x span a 4-dimensional subspace V of the vector space F(R). Consider a linear
transformation D : V → F(R) given by D(f) = f ′ for all functions f ∈ V .

(i) Show that the range of D is V and the null-space of D is trivial.
(ii) Find the matrix of D (regarded as an operator on V ) relative to the basis f1, f2, f3, f4.
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Solution: the matrix of D is









0 −1 0 0
1 0 0 0
1 0 0 −1
0 1 1 0









.

Since it is given that the functions f1, f2, f3, f4 span a 4-dimensional subspace, they must be linearly
independent and form a basis for the subspace. First we compute the images of these functions under
the transformation D:

(Df1)(x) = f ′

1(x) = (x sin x)′ = x cos x + sinx = f2(x) + f3(x),

(Df2)(x) = f ′

2(x) = (x cos x)′ = −x sinx + cos x = −f1(x) + f4(x),

(Df3)(x) = f ′

3(x) = (sinx)′ = cos x = f4(x),

(Df4)(x) = f ′

4(x) = (cos x)′ = − sinx = −f3(x).

Since all four images are in V , it follows that the entire range of D is contained in V . Also, we can
write down the matrix of D (regarded as an operator on V ) relative to the basis f1, f2, f3, f4:









0 −1 0 0
1 0 0 0
1 0 0 −1
0 1 1 0









.

To prove that the range R(D) coincides with V , it is enough to show that each of the functions
f1, f2, f3, f4 is in R(D). Indeed,

D(−f2 + f3) = −D(f2) + D(f3) = −(−f1 + f4) + f4 = f1,

D(f1 + f4) = D(f1) + D(f4) = (f2 + f3) + (−f3) = f2,

D(−f4) = −D(f4) = −(−f3) = f3,

D(f3) = f4.

By the Dimension Theorem, dimR(D)+dimN (D) = dimV . Since the range of D is V , it follows
that dimN (D) = 0. Thus the null-space N (D) is trivial.

Problem 4′ (25 pts.) The functions f1(x) = x sin x, f2(x) = x cos x, f3(x) = sin x, and
f4(x) = cos x span a 4-dimensional subspace V of the vector space F(R). Consider a linear
transformation L : V → F(R) given by (Lf)(x) = f(x + 1), x ∈ R for all functions f ∈ V .

(i) Show that the range of L is V and the null-space of L is trivial.
(ii) Find the matrix of L (regarded as an operator on V ) relative to the basis f1, f2, f3, f4.

Solution: the matrix of L is









cos 1 − sin 1 0 0
sin 1 cos 1 0 0
cos 1 − sin 1 cos 1 − sin 1
sin 1 cos 1 sin 1 cos 1









.

Since it is given that the functions f1, f2, f3, f4 span a 4-dimensional subspace, they must be linearly
independent and form a basis for the subspace. First we compute the images of these functions under
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the transformation L:

(Lf1)(x) = f1(x + 1) = (x + 1) sin(x + 1) = (x + 1)(sinx cos 1 + cos x sin 1)

= (cos 1)f1(x) + (sin 1)f2(x) + (cos 1)f3(x) + (sin 1)f4(x),

(Lf2)(x) = f2(x + 1) = (x + 1) cos(x + 1) = (x + 1)(cos x cos 1 − sinx sin 1)

= (− sin 1)f1(x) + (cos 1)f2(x) + (− sin 1)f3(x) + (cos 1)f4(x),

(Lf3)(x) = f3(x + 1) = sin(x + 1) = sinx cos 1 + cos x sin 1

= (cos 1)f3(x) + (sin 1)f4(x),

(Lf4)(x) = f4(x + 1) = cos(x + 1) = cos x cos 1 − sin x sin 1

= (− sin 1)f3(x) + (cos 1)f4(x).

Since all four images are in V , it follows that the entire range of L is contained in V . Also, we can
write down the matrix of L (regarded as an operator on V ) relative to the basis f1, f2, f3, f4:









cos 1 − sin 1 0 0
sin 1 cos 1 0 0
cos 1 − sin 1 cos 1 − sin 1
sin 1 cos 1 sin 1 cos 1









.

It follows from the definition of the operator L that the function Lf is identically zero only if f is
identically zero. Hence the null-space of L is trivial.

By the Dimension Theorem, dimR(L) + dimN (L) = dimV . Since the null-space of L is trivial,
we have dimN (L) = 0 so that dimR(L) = dim V . Since the range R(L) is contained in V , it follows
that R(L) = V .

Bonus Problem 5 (15 pts.) The set R+ of positive real numbers is a (real) vector space
with respect to unusual operations of addition and scalar multiplication given by x ⊕ y = xy

and r ⊙ x = xr for all x, y ∈ R+ and r ∈ R. Prove that this vector space is isomorphic to R

(with usual linear operations).

An isomorphism is provided by the logarithmic function f(x) = log x (to any base). Indeed, f
is a one-to-one mapping of R+ onto R. Since log(xy) = log x + log y for any x, y > 0, we have
f(x ⊕ y) = f(x) + f(y). Since log xr = r log x for any x > 0 and r ∈ R, we have f(r ⊙ x) = rf(x).
Thus f is a linear mapping.

Bonus Problem 5′ (15 pts.) Prove that the real numbers
√

2,
√

3, and
√

6 are linearly
independent over Q.

Assume that a
√

2 + b
√

3 + c
√

6 = 0 for some rational numbers a, b, and c. We have to prove that
a = b = c = 0.

Indeed, the equality a
√

2 + b
√

3 + c
√

6 = 0 is equivalent to a
√

2 + b
√

3 = −c
√

6. Squaring both
sides of the latter, we obtain (a

√
2+ b

√
3)2 = (−c

√
6)2. After simplification, 2ab

√
6+2a2 +3b2 = 6c2.

Since the numbers 2ab, 2a2 + 3b2, and 6c2 are rational while
√

6 is not, it follows that 2ab = 0. Then
a = 0 or b = 0. In the first case, we have b

√
3 + c

√
6 = 0, which implies that b = 0 as otherwise

1/
√

2 = −c/b, a rational number. In the second case, we have a
√

2 + c
√

6 = 0, which implies that
a = 0 as otherwise 1/

√
3 = −c/a, a rational number. Thus a = b = 0 in any case. Then c = 0 as well.
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