Test 1: Solutions

Problem 1 (20 pts.) Determine which of the following subsets of the vector space \mathbb{R}^{3} are subspaces. Briefly explain.
(i) The set S_{1} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x y z=0$.
(ii) The set S_{2} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x+y-z=0$.
(ii') The set S_{2}^{\prime} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x+y-z=0$ and $2 y-3 z=0$.
(iii) The set S_{3} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x^{2}-y^{2}=0$.
(iv) The set S_{4} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $2 y-3 z=0$ and $2 x-3 y-1=0$.
(iv') The set S_{4}^{\prime} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $e^{x}+e^{z}=0$.
Solution: $\quad S_{2}$ and S_{2}^{\prime} are subspaces of \mathbb{R}^{3}, the other sets are not.
A subset of \mathbb{R}^{3} is a subspace if it is closed under addition and scalar multiplication. Besides, a subspace must not be empty.

The set S_{1} is the union of three planes $x=0, y=0$, and $z=0$. It is not closed under addition as the following example shows: $(1,1,0)+(0,0,1)=(1,1,1)$.
S_{2} is a plane passing through the origin. It is easy to check that S_{2} is closed under addition and scalar multiplication. Alternatively, S_{2} is a subspace of \mathbb{R}^{3} since it is the null-space of a linear functional $\ell: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $\ell(x, y, z)=x+y-z,(x, y, z) \in \mathbb{R}^{3}$.
S_{2}^{\prime} is a subspace of \mathbb{R}^{3} since it is the null-space of a linear transformation $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by

$$
L\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & -1 \\
0 & 2 & -3
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{x+y-z}{2 y-3 z}
$$

for all $x, y, z \in \mathbb{R}$.
Since $x^{2}-y^{2}=(x-y)(x+y)$, the set S_{3} is the union of two planes $x-y=0$ and $x+y=0$. The following example shows that S_{3} is not closed under addition: $(1,1,0)+(1,-1,0)=(2,0,0)$.

The set S_{4} is the intersection of two planes $2 y-3 z=0$ and $2 x-3 y=1$. Hence S_{4} is a line. One of the planes does not pass through the origin so that S_{4} does not contain the zero vector. Therefore this set is not a subspace.

Since $e^{x}>0$ for any $x \in \mathbb{R}$, the set S_{4}^{\prime} is empty. The empty set is not a subspace.
Thus S_{2} and S_{2}^{\prime} are subspaces of \mathbb{R}^{3} while S_{1}, S_{3}, S_{4}, and S_{4}^{\prime} are not.

Problem $2\left(25\right.$ pts.) Let W be a subspace of $\mathcal{M}_{2,2}(\mathbb{R})$ spanned by matrices A, A^{2}, A^{3}, \ldots, A^{n}, \ldots, where

$$
A=\left(\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right)
$$

Find a basis for W, then extend it to a basis for $\mathcal{M}_{2,2}(\mathbb{R})$.
Solution: $\left\{A, A^{2}\right\}$ is a basis for W; the matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ extend it to a basis for $\mathcal{M}_{2,2}(\mathbb{R})$.

First we compute several powers of the matrix A :

$$
A^{2}=\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right), \quad A^{3}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad A^{4}=\left(\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right) .
$$

Since $A^{3}=I$, we have $A^{k+3}=A^{k} A^{3}=A^{k}$ for any integer $k>0$. It follows that $A^{3 m}=I, A^{1+3 m}=A$, and $A^{2+3 m}=A^{2}$ for any integer $m>0$. Therefore the subspace W is spanned by the matrices A, A^{2}, and $A^{3}=I$. Further, we have $A+A^{2}+A^{3}=O$. Hence $A^{3}=-A-A^{2}$, which implies that A and A^{2} span W as well. Clearly, A and A^{2} are linearly independent. Therefore $\left\{A, A^{2}\right\}$ is a basis for W.

The matrices

$$
E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad E_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad E_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad E_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

form a basis for the vector space $\mathcal{M}_{2,2}(\mathbb{R})$. Therefore we can extend the set $\left\{A, A^{2}\right\}$ to a basis for $\mathcal{M}_{2,2}(\mathbb{R})$ by adding two of these matrices. For example, $\left\{A, A^{2}, E_{1}, E_{2}\right\}$ is a basis. To verify this, it is enough to show that the matrices A, A^{2}, E_{1}, E_{2} are linearly independent. Assume that $r_{1} A+r_{2} A^{2}+r_{3} E_{1}+r_{4} E_{2}=O$ for some scalars $r_{1}, r_{2}, r_{3}, r_{4} \in \mathbb{R}$. Since

$$
\begin{aligned}
r_{1} A+r_{2} A^{2}+r_{3} E_{1}+r_{4} E_{2} & =r_{1}\left(\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right)+r_{2}\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right)+r_{3}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+r_{4}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
-r_{1}+r_{3} & r_{1}-r_{2}+r_{4} \\
-r_{1}+r_{2} & -r_{2}
\end{array}\right),
\end{aligned}
$$

we have $-r_{1}+r_{3}=r_{1}-r_{2}+r_{4}=-r_{1}+r_{2}=-r_{2}=0$. It follows that $r_{1}=r_{2}=r_{3}=r_{4}=0$. Thus A, A^{2}, E_{1}, E_{2} are linearly independent.

Problem 3 (20 pts.) Let V_{1}, V_{2}, and V_{3} be finite-dimensional vector spaces. Suppose that $L: V_{1} \rightarrow V_{2}$ and $T: V_{2} \rightarrow V_{3}$ are linear transformations. Prove that $\operatorname{rank}(T \circ L) \leq \operatorname{rank}(L)$ and $\operatorname{rank}(T \circ L) \leq \operatorname{rank}(T)$.

Since $(T \circ L)(\mathbf{x})=T(L(\mathbf{x}))$ for any $\mathbf{x} \in V_{1}$, it follows that the range of the composition $T \circ L$ is contained in the range of $T: \mathcal{R}(T \circ L) \subset \mathcal{R}(T)$. Then $\operatorname{dim} \mathcal{R}(T \circ L) \leq \operatorname{dim} \mathcal{R}(T)$, that is, $\operatorname{rank}(T \circ L) \leq$ $\operatorname{rank}(T)$.

By the Dimension Theorem, $\operatorname{dim} \mathcal{R}(L)+\operatorname{dim} \mathcal{N}(L)=\operatorname{dim} \mathcal{R}(T \circ L)+\operatorname{dim} \mathcal{N}(T \circ L)=\operatorname{dim} V_{1}$. Since $\operatorname{rank}(L)=\operatorname{dim} \mathcal{R}(L)$ and $\operatorname{rank}(T \circ L)=\operatorname{dim} \mathcal{R}(T \circ L)$, the inequality $\operatorname{rank}(T \circ L) \leq \operatorname{rank}(L)$ is equivalent to the inequality $\operatorname{dim} \mathcal{N}(T \circ L) \geq \operatorname{dim} \mathcal{N}(L)$. We are going to prove the latter.

Let $\mathbf{0}_{i}$ denote the zero vector in the vector space $V_{i}, 1 \leq i \leq 3$. If $L(\mathbf{x})=\mathbf{0}_{2}$ for some vector $\mathbf{x} \in V_{1}$, then $(T \circ L)(\mathbf{x})=T(L(\mathbf{x}))=T\left(\mathbf{0}_{2}\right)$, which equals $\mathbf{0}_{3}$ since the transformation T is linear. This means that the null-space of L is contained in the null-space of $T \circ L: \mathcal{N}(L) \subset \mathcal{N}(T \circ L)$. Consequently, $\operatorname{dim} \mathcal{N}(L) \leq \operatorname{dim} \mathcal{N}(T \circ L)$.

Problem 4 (25 pts.) The functions $f_{1}(x)=x \sin x, f_{2}(x)=x \cos x, f_{3}(x)=\sin x$, and $f_{4}(x)=\cos x$ span a 4 -dimensional subspace V of the vector space $\mathcal{F}(\mathbb{R})$. Consider a linear transformation $D: V \rightarrow \mathcal{F}(\mathbb{R})$ given by $D(f)=f^{\prime}$ for all functions $f \in V$.
(i) Show that the range of D is V and the null-space of D is trivial.
(ii) Find the matrix of D (regarded as an operator on V) relative to the basis $f_{1}, f_{2}, f_{3}, f_{4}$.

Solution: the matrix of D is $\left(\begin{array}{rrrr}0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0\end{array}\right)$.
Since it is given that the functions $f_{1}, f_{2}, f_{3}, f_{4}$ span a 4 -dimensional subspace, they must be linearly independent and form a basis for the subspace. First we compute the images of these functions under the transformation D :

$$
\begin{aligned}
& \left(D f_{1}\right)(x)=f_{1}^{\prime}(x)=(x \sin x)^{\prime}=x \cos x+\sin x=f_{2}(x)+f_{3}(x), \\
& \left(D f_{2}\right)(x)=f_{2}^{\prime}(x)=(x \cos x)^{\prime}=-x \sin x+\cos x=-f_{1}(x)+f_{4}(x), \\
& \left(D f_{3}\right)(x)=f_{3}^{\prime}(x)=(\sin x)^{\prime}=\cos x=f_{4}(x), \\
& \left(D f_{4}\right)(x)=f_{4}^{\prime}(x)=(\cos x)^{\prime}=-\sin x=-f_{3}(x) .
\end{aligned}
$$

Since all four images are in V, it follows that the entire range of D is contained in V. Also, we can write down the matrix of D (regarded as an operator on V) relative to the basis $f_{1}, f_{2}, f_{3}, f_{4}$:

$$
\left(\begin{array}{rrrr}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 0
\end{array}\right) .
$$

To prove that the range $\mathcal{R}(D)$ coincides with V, it is enough to show that each of the functions $f_{1}, f_{2}, f_{3}, f_{4}$ is in $\mathcal{R}(D)$. Indeed,

$$
\begin{gathered}
D\left(-f_{2}+f_{3}\right)=-D\left(f_{2}\right)+D\left(f_{3}\right)=-\left(-f_{1}+f_{4}\right)+f_{4}=f_{1} \\
D\left(f_{1}+f_{4}\right)=D\left(f_{1}\right)+D\left(f_{4}\right)=\left(f_{2}+f_{3}\right)+\left(-f_{3}\right)=f_{2}, \\
D\left(-f_{4}\right)=-D\left(f_{4}\right)=-\left(-f_{3}\right)=f_{3}, \\
D\left(f_{3}\right)=f_{4} .
\end{gathered}
$$

By the Dimension Theorem, $\operatorname{dim} \mathcal{R}(D)+\operatorname{dim} \mathcal{N}(D)=\operatorname{dim} V$. Since the range of D is V, it follows that $\operatorname{dim} \mathcal{N}(D)=0$. Thus the null-space $\mathcal{N}(D)$ is trivial.

Problem 4^{\prime} (25 pts.) The functions $f_{1}(x)=x \sin x, f_{2}(x)=x \cos x, f_{3}(x)=\sin x$, and $f_{4}(x)=\cos x$ span a 4-dimensional subspace V of the vector space $\mathcal{F}(\mathbb{R})$. Consider a linear transformation $L: V \rightarrow \mathcal{F}(\mathbb{R})$ given by $(L f)(x)=f(x+1), x \in \mathbb{R}$ for all functions $f \in V$.
(i) Show that the range of L is V and the null-space of L is trivial.
(ii) Find the matrix of L (regarded as an operator on V) relative to the basis $f_{1}, f_{2}, f_{3}, f_{4}$.

Solution: the matrix of L is $\left(\begin{array}{rrcc}\cos 1 & -\sin 1 & 0 & 0 \\ \sin 1 & \cos 1 & 0 & 0 \\ \cos 1 & -\sin 1 & \cos 1 & -\sin 1 \\ \sin 1 & \cos 1 & \sin 1 & \cos 1\end{array}\right)$.
Since it is given that the functions $f_{1}, f_{2}, f_{3}, f_{4}$ span a 4 -dimensional subspace, they must be linearly independent and form a basis for the subspace. First we compute the images of these functions under
the transformation L :

$$
\begin{aligned}
\left(L f_{1}\right)(x) & =f_{1}(x+1)=(x+1) \sin (x+1)=(x+1)(\sin x \cos 1+\cos x \sin 1) \\
& =(\cos 1) f_{1}(x)+(\sin 1) f_{2}(x)+(\cos 1) f_{3}(x)+(\sin 1) f_{4}(x) \\
\left(L f_{2}\right)(x) & =f_{2}(x+1)=(x+1) \cos (x+1)=(x+1)(\cos x \cos 1-\sin x \sin 1) \\
& =(-\sin 1) f_{1}(x)+(\cos 1) f_{2}(x)+(-\sin 1) f_{3}(x)+(\cos 1) f_{4}(x) \\
\left(L f_{3}\right)(x) & =f_{3}(x+1)=\sin (x+1)=\sin x \cos 1+\cos x \sin 1 \\
& =(\cos 1) f_{3}(x)+(\sin 1) f_{4}(x) \\
\left(L f_{4}\right)(x) & =f_{4}(x+1)=\cos (x+1)=\cos x \cos 1-\sin x \sin 1 \\
& =(-\sin 1) f_{3}(x)+(\cos 1) f_{4}(x)
\end{aligned}
$$

Since all four images are in V, it follows that the entire range of L is contained in V. Also, we can write down the matrix of L (regarded as an operator on V) relative to the basis $f_{1}, f_{2}, f_{3}, f_{4}$:

$$
\left(\begin{array}{rrcc}
\cos 1 & -\sin 1 & 0 & 0 \\
\sin 1 & \cos 1 & 0 & 0 \\
\cos 1 & -\sin 1 & \cos 1 & -\sin 1 \\
\sin 1 & \cos 1 & \sin 1 & \cos 1
\end{array}\right)
$$

It follows from the definition of the operator L that the function $L f$ is identically zero only if f is identically zero. Hence the null-space of L is trivial.

By the Dimension Theorem, $\operatorname{dim} \mathcal{R}(L)+\operatorname{dim} \mathcal{N}(L)=\operatorname{dim} V$. Since the null-space of L is trivial, we have $\operatorname{dim} \mathcal{N}(L)=0$ so that $\operatorname{dim} \mathcal{R}(L)=\operatorname{dim} V$. Since the range $\mathcal{R}(L)$ is contained in V, it follows that $\mathcal{R}(L)=V$.

Bonus Problem 5 (15 pts.) The set \mathbb{R}_{+}of positive real numbers is a (real) vector space with respect to unusual operations of addition and scalar multiplication given by $x \oplus y=x y$ and $r \odot x=x^{r}$ for all $x, y \in \mathbb{R}_{+}$and $r \in \mathbb{R}$. Prove that this vector space is isomorphic to \mathbb{R} (with usual linear operations).

An isomorphism is provided by the logarithmic function $f(x)=\log x$ (to any base). Indeed, f is a one-to-one mapping of \mathbb{R}_{+}onto \mathbb{R}. Since $\log (x y)=\log x+\log y$ for any $x, y>0$, we have $f(x \oplus y)=f(x)+f(y)$. Since $\log x^{r}=r \log x$ for any $x>0$ and $r \in \mathbb{R}$, we have $f(r \odot x)=r f(x)$. Thus f is a linear mapping.

Bonus Problem 5' (15 pts.) Prove that the real numbers $\sqrt{2}, \sqrt{3}$, and $\sqrt{6}$ are linearly independent over \mathbb{Q}.

Assume that $a \sqrt{2}+b \sqrt{3}+c \sqrt{6}=0$ for some rational numbers a, b, and c. We have to prove that $a=b=c=0$.

Indeed, the equality $a \sqrt{2}+b \sqrt{3}+c \sqrt{6}=0$ is equivalent to $a \sqrt{2}+b \sqrt{3}=-c \sqrt{6}$. Squaring both sides of the latter, we obtain $(a \sqrt{2}+b \sqrt{3})^{2}=(-c \sqrt{6})^{2}$. After simplification, $2 a b \sqrt{6}+2 a^{2}+3 b^{2}=6 c^{2}$. Since the numbers $2 a b, 2 a^{2}+3 b^{2}$, and $6 c^{2}$ are rational while $\sqrt{6}$ is not, it follows that $2 a b=0$. Then $a=0$ or $b=0$. In the first case, we have $b \sqrt{3}+c \sqrt{6}=0$, which implies that $b=0$ as otherwise $1 / \sqrt{2}=-c / b$, a rational number. In the second case, we have $a \sqrt{2}+c \sqrt{6}=0$, which implies that $a=0$ as otherwise $1 / \sqrt{3}=-c / a$, a rational number. Thus $a=b=0$ in any case. Then $c=0$ as well.

