Sample problems for Test 2

Any problem may be altered or replaced by a different one!

Problem 1 (20 pts.) Find a cubic polynomial $p(x)$ such that $p(-2)=0, p(-1)=4$, $p(1)=0$, and $p(2)=4$.

Problem 2 (25 pts.) Evaluate a determinant

$$
\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
c_{1} & c_{2} & c_{3} & c_{4} \\
c_{1}^{2} & c_{2}^{2} & c_{3}^{2} & c_{4}^{2} \\
c_{1}^{3} & c_{2}^{3} & c_{3}^{3} & c_{4}^{3}
\end{array}\right| .
$$

For which values of parameters $c_{1}, c_{2}, c_{3}, c_{4}$ is this determinant equal to zero?

Problem 3 (20 pts.) Let $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(i) Find all eigenvalues of the matrix A.
(ii) For each eigenvalue of A, find an associated eigenvector.
(iii) Find all eigenvalues of the matrix A^{3}.

Problem $4(25$ pts. $) \quad$ Let $B=\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)$. Find a matrix C such that $C^{2}=B^{2}$, but $C \neq \pm B$.

Bonus Problem 5 ($\mathbf{1 5}$ pts.) Let X be a square matrix that can be represented as a block matrix

$$
X=\left(\begin{array}{ll}
A & C \\
O & B
\end{array}\right)
$$

where A and B are square matrices and O is a zero matrix. Prove that $\operatorname{det}(X)=\operatorname{det}(A) \operatorname{det}(B)$.

