Sample problems for Test 2: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (20 pts.) Find a cubic polynomial $p(x)$ such that $p(-2)=0, p(-1)=4$, $p(1)=0$, and $p(2)=4$.

Let $p(x)=a+b x+c x^{2}+d x^{3}$. Then $p(-2)=a-2 b+4 c-8 d, p(-1)=a-b+c-d, p(1)=a+b+c+d$, and $p(2)=a+2 b+4 c+8 d$. The coefficients a, b, c, and d are to be chosen so that

$$
\left\{\begin{array}{l}
a-2 b+4 c-8 d=0, \\
a-b+c-d=4, \\
a+b+c+d=0, \\
a+2 b+4 c+8 d=4 .
\end{array}\right.
$$

This is a system of linear equations. Let us convert its augmented matrix to reduced row echelon form using elementary row operations:

$$
\begin{aligned}
\left(\begin{array}{rrrr|r}
1 & -2 & 4 & -8 & 0 \\
1 & -1 & 1 & -1 & 4 \\
1 & 1 & 1 & 1 & 0 \\
1 & 2 & 4 & 8 & 4
\end{array}\right) & \rightarrow\left(\begin{array}{rrrr|r}
1 & 1 & 1 & 1 & 0 \\
1 & -1 & 1 & -1 & 4 \\
1 & -2 & 4 & -8 & 0 \\
1 & 2 & 4 & 8 & 4
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|r}
1 & 1 & 1 & 1 & 0 \\
0 & -2 & 0 & -2 & 4 \\
1 & -2 & 4 & -8 & 0 \\
1 & 2 & 4 & 8 & 4
\end{array}\right) \\
\rightarrow\left(\begin{array}{rrrr|r}
1 & 1 & 1 & 1 & 0 \\
0 & -2 & 0 & -2 & 4 \\
0 & -3 & 3 & -9 & 0 \\
1 & 2 & 4 & 8 & 4
\end{array}\right) & \rightarrow\left(\begin{array}{rrrr|r}
1 & 1 & 1 & 1 & 0 \\
0 & -2 & 0 & -2 & 4 \\
0 & -3 & 3 & -9 & 0 \\
0 & 1 & 3 & 7 & 4
\end{array}\right)
\end{aligned} \rightarrow\left(\begin{array}{rrrrr|r}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & -2 \\
0 & -3 & 3 & -9 & 0 \\
0 & 1 & 3 & 7 & 4
\end{array}\right), ~\left(\begin{array}{rrrr|r}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & -2 \\
0 & 1 & -1 & 3 & 0 \\
0 & 1 & 3 & 7 & 4
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|r}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & -2 \\
0 & 0 & -1 & 2 & 2 \\
0 & 1 & 3 & 7 & 4
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|r}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & -2 \\
0 & 0 & -1 & 2 & 2 \\
0 & 0 & 3 & 6 & 6
\end{array}\right),
$$

It follows that $a=2, b=-3, c=0$, and $d=1$. Thus $p(x)=x^{3}-3 x+2$.

Alternative solution: Since -2 and 1 are roots of the cubic polynomial p, it has the form $p(x)=(x+2)(x-1)(a x+b)$. Then $p(-1)=2 a-2 b$ and $p(2)=8 a+4 b$. Therefore a and b are to be chosen so that

$$
\left\{\begin{array} { l }
{ 2 a - 2 b = 4 , } \\
{ 8 a + 4 b = 4 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
a-b=2 \\
2 a+b=1
\end{array}\right.\right.
$$

Solving this system of linear equations, we obtain $a=1, b=-1$. Thus

$$
p(x)=(x+2)(x-1)(x-1)=(x+2)\left(x^{2}-2 x+1\right)=x^{3}-3 x+2
$$

Problem 2 (25 pts.) Evaluate a determinant

$$
\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
c_{1} & c_{2} & c_{3} & c_{4} \\
c_{1}^{2} & c_{2}^{2} & c_{3}^{2} & c_{4}^{2} \\
c_{1}^{3} & c_{2}^{3} & c_{3}^{3} & c_{4}^{3}
\end{array}\right|
$$

For which values of parameters $c_{1}, c_{2}, c_{3}, c_{4}$ is this determinant equal to zero?
Let d denote the value of the determinant. To simplify the matrix, we subtract c_{1} times the 3 rd row from the 4 th row, then subtract c_{1} times the 2 nd row from the 3 rd row, then subtract c_{1} times the 1 st row from the 2 nd row:

$$
\begin{aligned}
& d=\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
c_{1} & c_{2} & c_{3} & c_{4} \\
c_{1}^{2} & c_{2}^{2} & c_{3}^{2} & c_{4}^{2} \\
c_{1}^{3} & c_{2}^{3} & c_{3}^{3} & c_{4}^{3}
\end{array}\right|=\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
c_{1} & c_{2} & c_{3} & c_{4} \\
c_{1}^{2} & c_{2}^{2} & c_{3}^{2} & c_{4}^{2} \\
0 & c_{2}^{3}-c_{1} c_{2}^{2} & c_{3}^{3}-c_{1} c_{3}^{2} & c_{4}^{3}-c_{1} c_{4}^{2}
\end{array}\right| \\
& =\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
c_{1} & c_{2} & c_{3} & c_{4} \\
0 & c_{2}^{2}-c_{1} c_{2} & c_{3}^{2}-c_{1} c_{3} & c_{4}^{2}-c_{1} c_{4} \\
0 & c_{2}^{3}-c_{1} c_{2}^{2} & c_{3}^{3}-c_{1} c_{3}^{2} & c_{4}^{3}-c_{1} c_{4}^{2}
\end{array}\right|=\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & c_{2}-c_{1} & c_{3}-c_{1} & c_{4}-c_{1} \\
0 & c_{2}^{2}-c_{1} c_{2} & c_{3}^{2}-c_{1} c_{3} & c_{4}^{2}-c_{1} c_{4} \\
0 & c_{2}^{3}-c_{1} c_{2}^{2} & c_{3}^{3}-c_{1} c_{3}^{2} & c_{4}^{3}-c_{1} c_{4}^{2}
\end{array}\right| .
\end{aligned}
$$

The expansion by the first column yields

$$
d=\left|\begin{array}{ccc}
c_{2}-c_{1} & c_{3}-c_{1} & c_{4}-c_{1} \\
c_{2}^{2}-c_{1} c_{2} & c_{3}^{2}-c_{1} c_{3} & c_{4}^{2}-c_{1} c_{4} \\
c_{2}^{3}-c_{1} c_{2}^{2} & c_{3}^{3}-c_{1} c_{3}^{2} & c_{4}^{3}-c_{1} c_{4}^{2}
\end{array}\right|
$$

Now there is a common factor in each column:

$$
\begin{aligned}
& d=\left|\begin{array}{ccc}
c_{2}-c_{1} & c_{3}-c_{1} & c_{4}-c_{1} \\
\left(c_{2}-c_{1}\right) c_{2} & \left(c_{3}-c_{1}\right) c_{3} & \left(c_{4}-c_{1}\right) c_{4} \\
\left(c_{2}-c_{1}\right) c_{2}^{2} & \left(c_{3}-c_{1}\right) c_{3}^{2} & \left(c_{4}-c_{1}\right) c_{4}^{2}
\end{array}\right|=\left(c_{2}-c_{1}\right)\left|\begin{array}{ccc}
1 & c_{3}-c_{1} & c_{4}-c_{1} \\
c_{2} & \left(c_{3}-c_{1}\right) c_{3} & \left(c_{4}-c_{1}\right) c_{4} \\
c_{2}^{2} & \left(c_{3}-c_{1}\right) c_{3}^{2} & \left(c_{4}-c_{1}\right) c_{4}^{2}
\end{array}\right| \\
& =\left(c_{2}-c_{1}\right)\left(c_{3}-c_{1}\right)\left|\begin{array}{ccc}
1 & 1 & c_{4}-c_{1} \\
c_{2} & c_{3} & \left(c_{4}-c_{1}\right) c_{4} \\
c_{2}^{2} & c_{3}^{2} & \left(c_{4}-c_{1}\right) c_{4}^{2}
\end{array}\right|=\left(c_{2}-c_{1}\right)\left(c_{3}-c_{1}\right)\left(c_{4}-c_{1}\right)\left|\begin{array}{ccc}
1 & 1 & 1 \\
c_{2} & c_{3} & c_{4} \\
c_{2}^{2} & c_{3}^{2} & c_{4}^{2}
\end{array}\right| .
\end{aligned}
$$

The latter determinant is evaluated using the same technique as before:

$$
\begin{gathered}
\left|\begin{array}{ccc}
1 & 1 & 1 \\
c_{2} & c_{3} & c_{4} \\
c_{2}^{2} & c_{3}^{2} & c_{4}^{2}
\end{array}\right|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
c_{2} & c_{3} & c_{4} \\
0 & c_{3}^{2}-c_{2} c_{3} & c_{4}^{2}-c_{2} c_{4}
\end{array}\right|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & c_{3}-c_{2} & c_{4}-c_{2} \\
0 & c_{3}^{2}-c_{2} c_{3} & c_{4}^{2}-c_{2} c_{4}
\end{array}\right| \\
=\left|\begin{array}{cc}
c_{3}-c_{2} & c_{4}-c_{2} \\
c_{3}^{2}-c_{2} c_{3} & c_{4}^{2}-c_{2} c_{4}
\end{array}\right|=\left|\begin{array}{cc}
c_{3}-c_{2} & c_{4}-c_{2} \\
\left(c_{3}-c_{2}\right) c_{3} & \left(c_{4}-c_{2}\right) c_{4}
\end{array}\right|=\left(c_{3}-c_{2}\right)\left|\begin{array}{cc}
1 & c_{4}-c_{2} \\
c_{3} & \left(c_{4}-c_{2}\right) c_{4}
\end{array}\right| \\
=\left(c_{3}-c_{2}\right)\left(c_{4}-c_{2}\right)\left|\begin{array}{cc}
1 & 1 \\
c_{3} & c_{4}
\end{array}\right|=\left(c_{3}-c_{2}\right)\left(c_{4}-c_{2}\right)\left(c_{4}-c_{3}\right)
\end{gathered}
$$

Thus

$$
d=\left(c_{2}-c_{1}\right)\left(c_{3}-c_{1}\right)\left(c_{4}-c_{1}\right)\left(c_{3}-c_{2}\right)\left(c_{4}-c_{2}\right)\left(c_{4}-c_{3}\right)
$$

The determinant is equal to zero if and only if the numbers $c_{1}, c_{2}, c_{3}, c_{4}$ are not all distinct.

Problem 3 (20 pts.) Let $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(i) Find all eigenvalues of the matrix A.

The eigenvalues of A are roots of the characteristic equation $\operatorname{det}(A-\lambda I)=0$. We obtain that

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & 2 & 0 \\
1 & 1-\lambda & 1 \\
0 & 2 & 1-\lambda
\end{array}\right|=(1-\lambda)^{3}-2(1-\lambda)-2(1-\lambda) \\
=(1-\lambda)\left((1-\lambda)^{2}-4\right)=(1-\lambda)((1-\lambda)-2)((1-\lambda)+2)=-(\lambda-1)(\lambda+1)(\lambda-3) .
\end{gathered}
$$

Hence the matrix A has three eigenvalues: $-1,1$, and 3 .
(ii) For each eigenvalue of A, find an associated eigenvector.

An eigenvector $\mathbf{v}=(x, y, z)^{t}$ of A associated with an eigenvalue λ is a nonzero solution of the vector equation $(A-\lambda I) \mathbf{v}=\mathbf{0}$. To solve the equation, we apply row reduction to the matrix $A-\lambda I$.

First consider the case $\lambda=-1$. The row reduction yields

$$
A+I=\left(\begin{array}{lll}
2 & 2 & 0 \\
1 & 2 & 1 \\
0 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Hence

$$
(A+I) \mathbf{v}=\mathbf{0} \quad \Longleftrightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
x-z=0 \\
y+z=0
\end{array}\right.
$$

The general solution is $x=s, y=-s, z=s$, where $s \in \mathbb{R}$. In particular, $\mathbf{v}_{1}=(1,-1,1)^{t}$ is an eigenvector of A associated with the eigenvalue -1 .

Secondly, consider the case $\lambda=1$. The row reduction yields

$$
A-I=\left(\begin{array}{lll}
0 & 2 & 0 \\
1 & 0 & 1 \\
0 & 2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
0 & 2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Hence

$$
(A-I) \mathbf{v}=\mathbf{0} \quad \Longleftrightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \Longleftrightarrow\left\{\begin{array}{l}
x+z=0 \\
y=0
\end{array}\right.
$$

The general solution is $x=-s, y=0, z=s$, where $s \in \mathbb{R}$. In particular, $\mathbf{v}_{2}=(-1,0,1)^{t}$ is an eigenvector of A associated with the eigenvalue 1 .

Finally, consider the case $\lambda=3$. The row reduction yields

$$
\begin{aligned}
A-3 I=\left(\begin{array}{rrr}
-2 & 2 & 0 \\
1 & -2 & 1 \\
0 & 2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
1 & -2 & 1 \\
0 & 2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & -1 & 1 \\
0 & 2 & -2
\end{array}\right) \\
\rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Hence

$$
(A-3 I) \mathbf{v}=\mathbf{0} \quad \Longleftrightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
x-z=0 \\
y-z=0
\end{array}\right.
$$

The general solution is $x=s, y=s, z=s$, where $s \in \mathbb{R}$. In particular, $\mathbf{v}_{3}=(1,1,1)^{t}$ is an eigenvector of A associated with the eigenvalue 3 .
(iii) Find all eigenvalues of the matrix A^{3}.

Suppose that \mathbf{v} is an eigenvector of the matrix A associated with an eigenvalue λ, that is, $\mathbf{v} \neq \mathbf{0}$ and $A \mathbf{v}=\lambda \mathbf{v}$. Then

$$
\begin{gathered}
A^{2} \mathbf{v}=A(A \mathbf{v})=A(\lambda \mathbf{v})=\lambda(A \mathbf{v})=\lambda(\lambda \mathbf{v})=\lambda^{2} \mathbf{v} \\
A^{3} \mathbf{v}=A\left(A^{2} \mathbf{v}\right)=A\left(\lambda^{2} \mathbf{v}\right)=\lambda^{2}(A \mathbf{v})=\lambda^{2}(\lambda \mathbf{v})=\lambda^{3} \mathbf{v}
\end{gathered}
$$

Therefore \mathbf{v} is also an eigenvector of the matrix A^{3} and the associated eigenvalue is λ^{3}. We already know that the matrix A has eigenvalues $-1,1$, and 3 . It follows that A^{3} has eigenvalues $-1,1$, and 27. It remains to notice that a 3×3 matrix can have at most 3 eigenvalues.

Problem $4(25$ pts. $) \quad$ Let $B=\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)$. Find a matrix C such that $C^{2}=B^{2}$, but $C \neq \pm B$.

First we diagonalize the matrix B. The characteristic polynomial is

$$
\operatorname{det}(B-\lambda I)=\left|\begin{array}{cc}
2-\lambda & 3 \\
1 & 4-\lambda
\end{array}\right|=(2-\lambda)(4-\lambda)-3=\lambda^{2}-6 \lambda+5=(\lambda-1)(\lambda-5) .
$$

It has roots 1 and 5 .
An eigenvector $\mathbf{v}=(x, y)^{t}$ of B associated with the eigenvalue 1 satisfies

$$
(B-I) \mathbf{v}=\mathbf{0} \quad \Longleftrightarrow \quad\left(\begin{array}{ll}
1 & 3 \\
1 & 3
\end{array}\right)\binom{x}{y}=\binom{0}{0} \quad \Longleftrightarrow \quad x+3 y=0
$$

In particular, $\mathbf{v}_{1}=(-3,1)^{t}$ is one of the eigenvectors.

An eigenvector $\mathbf{v}=(x, y)^{t}$ of B associated with the eigenvalue 5 satisfies

$$
(B-5 I) \mathbf{v}=\mathbf{0} \quad \Longleftrightarrow \quad\left(\begin{array}{rr}
-3 & 3 \\
1 & -1
\end{array}\right)\binom{x}{y}=\binom{0}{0} \quad \Longleftrightarrow \quad x-y=0
$$

In particular, $\mathbf{v}_{2}=(1,1)^{t}$ is one of the eigenvectors.
The vectors \mathbf{v}_{1} and \mathbf{v}_{2} form a basis for \mathbb{R}^{2}. It follows that $B=U D U^{-1}$, where

$$
D=\left(\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right), \quad U=\left(\begin{array}{rr}
-3 & 1 \\
1 & 1
\end{array}\right) .
$$

Now we let $C=U P U^{-1}$, where

$$
P=\left(\begin{array}{rr}
-1 & 0 \\
0 & 5
\end{array}\right) .
$$

The matrix P is chosen so that $P^{2}=D^{2}$ and $P \neq \pm D$. Since $C^{2}=U P U^{-1} U P U^{-1}=U P^{2} U^{-1}$ and $B^{2}=U D U^{-1} U D U^{-1}=U D^{2} U^{-1}$, we obtain that $C^{2}=B^{2}$ and $C \neq \pm B$.

It remains to compute the matrix C :

$$
\begin{gathered}
C=U P U^{-1}=\left(\begin{array}{rr}
-3 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{rr}
-1 & 0 \\
0 & 5
\end{array}\right)\left(\begin{array}{rr}
-3 & 1 \\
1 & 1
\end{array}\right)^{-1}=\left(\begin{array}{rr}
3 & 5 \\
-1 & 5
\end{array}\right)\left(\begin{array}{rr}
-3 & 1 \\
1 & 1
\end{array}\right)^{-1} \\
=\left(\begin{array}{rr}
3 & 5 \\
-1 & 5
\end{array}\right) \frac{1}{-4}\left(\begin{array}{rr}
1 & -1 \\
-1 & -3
\end{array}\right)=\frac{1}{4}\left(\begin{array}{rr}
3 & 5 \\
-1 & 5
\end{array}\right)\left(\begin{array}{rr}
-1 & 1 \\
1 & 3
\end{array}\right)=\frac{1}{4}\left(\begin{array}{ll}
2 & 18 \\
6 & 14
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
1 & 9 \\
3 & 7
\end{array}\right) .
\end{gathered}
$$

Bonus Problem 5 ($\mathbf{1 5}$ pts.) Let X be a square matrix that can be represented as a block matrix

$$
X=\left(\begin{array}{cc}
A & C \\
O & B
\end{array}\right)
$$

where A and B are square matrices and O is a zero matrix. Prove that $\operatorname{det}(X)=\operatorname{det}(A) \operatorname{det}(B)$.
Consider block matrices

$$
Y=\left(\begin{array}{cc}
I & C \\
O & B
\end{array}\right), \quad Z=\left(\begin{array}{cc}
A & O^{\prime} \\
O & I^{\prime}
\end{array}\right),
$$

where I and I^{\prime} are the identity matrices of the same dimensions as A and B, respectively, and O^{\prime} is the zero matrix of the same dimensions as C. Multiplying Y and Z as block matrices, we obtain

$$
Y Z=\left(\begin{array}{cc}
I A+C O & I O^{\prime}+C I^{\prime} \\
O A+B O & O O^{\prime}+B I^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
A & C \\
O & B
\end{array}\right)=X .
$$

As a consequence, $\operatorname{det}(X)=\operatorname{det}(Y) \operatorname{det}(Z)$. It remains to show that $\operatorname{det}(Y)=\operatorname{det}(B)$ and $\operatorname{det}(Z)=$ $\operatorname{det}(A)$. The determinant of the matrix Y is easily expanded by the first column:

$$
\operatorname{det}(Y)=\left|\begin{array}{cccc|ccc}
1 & 0 & \ldots & 0 & c_{11} & \ldots & c_{1 n} \\
0 & 1 & \ldots & 0 & c_{21} & \ldots & c_{2 n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1 & c_{k 1} & \ldots & c_{k n} \\
\hline 0 & 0 & \ldots & 0 & & & \\
\vdots & \vdots & \ddots & \vdots & & B & \\
0 & 0 & \ldots & 0 & & &
\end{array}\right|=\left|\begin{array}{ccc|ccc}
1 & \ldots & 0 & c_{21} & \ldots & c_{2 n} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 1 & c_{k 1} & \ldots & c_{k n} \\
\hline 0 & \ldots & 0 & & \\
\vdots & \ddots & \vdots & & B & \\
0 & \ldots & 0 & &
\end{array}\right| .
$$

The new determinant can also be expanded by the first column. We keep expanding and eventually obtain that $\operatorname{det}(Y)=\operatorname{det}(B)$. Similarly, the equality $\operatorname{det}(Z)=\operatorname{det}(A)$ is established by repeatedly expanding the determinant of Z along the last row.

