
MATH 423–500/200 March 30, 2012

Test 2: Solutions

Problem 1 (20 pts.) Find the determinant of the matrix

A =













0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0













.

Solution: det A = 4.

Let us modify the first row of A adding to it all other rows. These elementary row operations do
not change the determinant:
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Now all entries in the first row are the same:
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Finally, we subtract the first row of the latter matrix from every other row. These elementary row
operations, which do not change the determinant, result in an upper triangular matrix:
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1 1 1 1 1
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1
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Problem 1′ (20 pts.) Find the determinant of the matrix

A =

















0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0

















.

Solution: det A = −5.
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Problem 2 (25 pts.) Consider a system of linear equations in variables x, y, z:















x + 2y − z = 1,
2x + 3y + z = 3,
x + 3y + az = 0,
x + y + 2z = b.

Find values of parameters a and b for which the system has infinitely many solutions, and solve
the system for these values.

Solution: a = −4, b = 2. General solution of the system for these values of parameters:
(x, y, z) = (3,−1, 0) + t(−5, 3, 1), t ∈ R.

To determine the number of solutions for the system, we convert its augmented matrix to row
echelon form using elementary row operations:









1 2 −1 1
2 3 1 3
1 3 a 0
1 1 2 b









→









1 2 −1 1
0 −1 3 1
1 3 a 0
1 1 2 b









→









1 2 −1 1
0 −1 3 1
0 1 a + 1 −1
1 1 2 b









→









1 2 −1 1
0 −1 3 1
0 1 a + 1 −1
0 −1 3 b − 1









→









1 2 −1 1
0 −1 3 1
0 0 a + 4 0
0 −1 3 b − 1









→









1 2 −1 1
0 −1 3 1
0 0 a + 4 0
0 0 0 b − 2









.

Now the augmented matrix is in row echelon form (except for the case a = −4, b 6= 2 when one also
needs to exchange the last two rows). If b 6= 2, then there is a leading entry in the rightmost column,
which indicates inconsistency. In the case b = 2 the system is consistent. If, additionally, a 6= −4 then
there is a leading entry in each of the first three columns, which implies uniqueness of the solution.

Thus the system has infinitely many solutions only if a = −4 and b = 2. To find the solutions, we
proceed to reduced row echelon form (for these particular values of parameters):









1 2 −1 1
0 −1 3 1
0 0 0 0
0 0 0 0









→









1 2 −1 1
0 1 −3 −1
0 0 0 0
0 0 0 0









→









1 0 5 3
0 1 −3 −1
0 0 0 0
0 0 0 0









.

The latter matrix is the augmented matrix of the following system of linear equations equivalent to
the given one:

{

x + 5z = 3,

y − 3z = −1
⇐⇒

{

x = −5z + 3,

y = 3z − 1.

The general solution is (x, y, z) = (−5t + 3, 3t − 1, t) = (3,−1, 0) + t(−5, 3, 1), t ∈ R.

Problem 3 (20 pts.) Let B =

(

2 3
3 2

)

. Find a polynomial p(x) such that B−1 = p(B).

Solution: p(x) =
1

5
x −

4

5
.
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By the Cayley-Hamilton theorem, q(B) = O, where q is the characteristic polynomial of the matrix
B. We have

q(λ) = det(B − λI) =

(

2 − λ 3
3 2 − λ

)

= (2 − λ)2 − 32 = λ2 − 4λ − 5.

Therefore B2 − 4B − 5I = O. Then (B − 4I)B = B2 − 4B = 5I so that 1

5
(B − 4I)B = I. It follows

that B−1 = 1

5
(B − 4I) = 1

5
B − 4

5
I.

Problem 3′ (20 pts.) Let B =

(

3 2
2 3

)

. Find a polynomial p(x) such that B−1 = p(B).

Solution: p(x) = −
1

5
x +

6

5
.

Problem 4 (25 pts.) Let C =





1 0 1
0 3 0
1 0 1



.

(i) Find all eigenvalues of the matrix C.
(ii) For each eigenvalue of C, find an associated eigenvector.
(iii) Find a diagonal matrix D and an invertible matrix U such that C = UDU−1.

Solution: Eigenvalues of C: 0, 2, and 3. Associated eigenvectors: (−1, 0, 1), (1, 0, 1), and
(0, 1, 0), respectively.

D =





0 0 0
0 2 0
0 0 3



 , U =





−1 1 0
0 0 1
1 1 0



 .

Problem 4′ (25 pts.) Let C =





−1 0 1
0 2 0
1 0 −1



.

(i) Find all eigenvalues of the matrix C.
(ii) For each eigenvalue of C, find an associated eigenvector.
(iii) Find a diagonal matrix D and an invertible matrix U such that C = UDU−1.

Solution: Eigenvalues of C: −2, 0, and 2. Associated eigenvectors: (−1, 0, 1), (1, 0, 1),
and (0, 1, 0), respectively.

D =





−2 0 0
0 0 0
0 0 2



 , U =





−1 1 0
0 0 1
1 1 0



 .
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Bonus Problem 5 (15 pts.) Let A be the matrix from Problem 1.

(i) Find all eigenvalues of A.
(ii) For each eigenvalue of A, find a basis for the associated eigenspace.

Solution: Eigenvalues of A: 4 and −1. Basis for the eigenspace associated with the
eigenvalue 4: {(1, 1, 1, 1, 1)}. Basis for the eigenspace associated with the eigenvalue −1:
{(−1, 1, 0, 0, 0), (−1, 0, 1, 0, 0), (−1, 0, 0, 1, 0), (−1, 0, 0, 0, 1)}.

The characteristic polynomial of the matrix A is computed in the same way as the determinant of
A was evaluated in the solution of Problem 1 above:
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1 1 1 1 1
0 −λ − 1 0 0 0
0 0 −λ − 1 0 0
0 0 0 −λ − 1 0
0 0 0 0 −λ − 1
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= (4 − λ)(−λ − 1)4 = (4 − λ)(1 + λ)4.

The roots of this polynomial are 4 and −1. Since 4 is a simple root, the associated eigenspace is
one-dimensional. It is easy to observe that (1, 1, 1, 1, 1) is an eigenvector for 4. Therefore this vector
forms a basis for the eigenspace.

All entries of the matrix A + I are equal to 1. It follows that the eigenspace associated to the
eigenvalue −1 consists of all vectors (x1, x2, x3, x4, x5) ∈ R

5 such that x1 +x2 +x3 +x4 +x5 = 0. The
general solution of this linear equation is

(x1, x2, x3, x4, x5) = (−t1 − t2 − t3 − t4, t1, t2, t3, t4)

= t1(−1, 1, 0, 0, 0) + t2(−1, 0, 1, 0, 0) + t3(−1, 0, 0, 1, 0) + t4(−1, 0, 0, 0, 1), t1, t2, t3, t4 ∈ R.

We obtain that vectors (−1, 1, 0, 0, 0), (−1, 0, 1, 0, 0), (−1, 0, 0, 1, 0), and (−1, 0, 0, 0, 1) form a basis for
the eigenspace of A associated to the eigenvalue −1.

Bonus Problem 5′ (15 pts.) Let A be the matrix from Problem 1′.

(i) Find all eigenvalues of A.
(ii) For each eigenvalue of A, find a basis for the associated eigenspace.

Solution: Eigenvalues of A: 5 and −1. Basis for the eigenspace associated with the
eigenvalue 5: {(1, 1, 1, 1, 1, 1)}. Basis for the eigenspace associated with the eigenvalue −1:
{(−1, 1, 0, 0, 0, 0), (−1, 0, 1, 0, 0, 0), (−1, 0, 0, 1, 0, 0), (−1, 0, 0, 0, 1, 0), (−1, 0, 0, 0, 0, 1)}.
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