Test 2: Solutions

Problem 1 (20 pts.) Find the determinant of the matrix

$$
A=\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right)
$$

Solution: $\operatorname{det} A=4$.
Let us modify the first row of A adding to it all other rows. These elementary row operations do not change the determinant:

$$
\operatorname{det} A=\left|\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right|=\left|\begin{array}{ccccc}
4 & 4 & 4 & 4 & 4 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right|
$$

Now all entries in the first row are the same:

$$
\left|\begin{array}{lllll}
4 & 4 & 4 & 4 & 4 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right|=4\left|\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right| .
$$

Finally, we subtract the first row of the latter matrix from every other row. These elementary row operations, which do not change the determinant, result in an upper triangular matrix:

$$
\operatorname{det} A=4\left|\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right|=4\left|\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -1
\end{array}\right|=4
$$

Problem 1 ${ }^{\prime}$ (20 pts.) Find the determinant of the matrix

$$
A=\left(\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0
\end{array}\right)
$$

Solution: $\operatorname{det} A=-5$.

Problem 2 (25 pts.) Consider a system of linear equations in variables x, y, z :

$$
\left\{\begin{array}{l}
x+2 y-z=1 \\
2 x+3 y+z=3 \\
x+3 y+a z=0 \\
x+y+2 z=b
\end{array}\right.
$$

Find values of parameters a and b for which the system has infinitely many solutions, and solve the system for these values.

Solution: $a=-4, b=2$. General solution of the system for these values of parameters: $(x, y, z)=(3,-1,0)+t(-5,3,1), t \in \mathbb{R}$.

To determine the number of solutions for the system, we convert its augmented matrix to row echelon form using elementary row operations:

$$
\begin{aligned}
& \left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
2 & 3 & 1 & 3 \\
1 & 3 & a & 0 \\
1 & 1 & 2 & b
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & -1 & 3 & 1 \\
1 & 3 & a & 0 \\
1 & 1 & 2 & b
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & -1 & 3 & 1 \\
0 & 1 & a+1 & -1 \\
1 & 1 & 2 & b
\end{array}\right) \\
& \rightarrow\left(\begin{array}{rrr|c}
1 & 2 & -1 & 1 \\
0 & -1 & 3 & 1 \\
0 & 1 & a+1 & -1 \\
0 & -1 & 3 & b-1
\end{array}\right) \rightarrow\left(\begin{array}{rrr|c}
1 & 2 & -1 & 1 \\
0 & -1 & 3 & 1 \\
0 & 0 & a+4 & 0 \\
0 & -1 & 3 & b-1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 2 & -1 & 1 \\
0 & -1 & 3 & 1 \\
0 & 0 & a+4 & 0 \\
0 & 0 & 0 & b-2
\end{array}\right) .
\end{aligned}
$$

Now the augmented matrix is in row echelon form (except for the case $a=-4, b \neq 2$ when one also needs to exchange the last two rows). If $b \neq 2$, then there is a leading entry in the rightmost column, which indicates inconsistency. In the case $b=2$ the system is consistent. If, additionally, $a \neq-4$ then there is a leading entry in each of the first three columns, which implies uniqueness of the solution.

Thus the system has infinitely many solutions only if $a=-4$ and $b=2$. To find the solutions, we proceed to reduced row echelon form (for these particular values of parameters):

$$
\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & -1 & 3 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & 1 & -3 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & 5 & 3 \\
0 & 1 & -3 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

The latter matrix is the augmented matrix of the following system of linear equations equivalent to the given one:

$$
\left\{\begin{array} { l }
{ x + 5 z = 3 , } \\
{ y - 3 z = - 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x=-5 z+3, \\
y=3 z-1 .
\end{array}\right.\right.
$$

The general solution is $(x, y, z)=(-5 t+3,3 t-1, t)=(3,-1,0)+t(-5,3,1), t \in \mathbb{R}$.

Problem $3(20 \mathrm{pts}$.$) \quad Let B=\left(\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right)$. Find a polynomial $p(x)$ such that $B^{-1}=p(B)$.
Solution: $\quad p(x)=\frac{1}{5} x-\frac{4}{5}$.

By the Cayley-Hamilton theorem, $q(B)=O$, where q is the characteristic polynomial of the matrix B. We have

$$
q(\lambda)=\operatorname{det}(B-\lambda I)=\left(\begin{array}{cc}
2-\lambda & 3 \\
3 & 2-\lambda
\end{array}\right)=(2-\lambda)^{2}-3^{2}=\lambda^{2}-4 \lambda-5 .
$$

Therefore $B^{2}-4 B-5 I=O$. Then $(B-4 I) B=B^{2}-4 B=5 I$ so that $\frac{1}{5}(B-4 I) B=I$. It follows that $B^{-1}=\frac{1}{5}(B-4 I)=\frac{1}{5} B-\frac{4}{5} I$.

Problem $3^{\prime}(20 \mathrm{pts}$.$) Let B=\left(\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right)$. Find a polynomial $p(x)$ such that $B^{-1}=p(B)$.
Solution: $\quad p(x)=-\frac{1}{5} x+\frac{6}{5}$.

Problem 4 (25 pts.) Let $C=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 1\end{array}\right)$.
(i) Find all eigenvalues of the matrix C.
(ii) For each eigenvalue of C, find an associated eigenvector.
(iii) Find a diagonal matrix D and an invertible matrix U such that $C=U D U^{-1}$.

Solution: Eigenvalues of $C: 0,2$, and 3. Associated eigenvectors: $(-1,0,1),(1,0,1)$, and $(0,1,0)$, respectively.

$$
D=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right), \quad U=\left(\begin{array}{rrr}
-1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Problem 4^{\prime} (25 pts.) Let $C=\left(\begin{array}{rrr}-1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & -1\end{array}\right)$.
(i) Find all eigenvalues of the matrix C.
(ii) For each eigenvalue of C, find an associated eigenvector.
(iii) Find a diagonal matrix D and an invertible matrix U such that $C=U D U^{-1}$.

Solution: Eigenvalues of $C:-2,0$, and 2. Associated eigenvectors: $(-1,0,1),(1,0,1)$, and $(0,1,0)$, respectively.

$$
D=\left(\begin{array}{rrr}
-2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right), \quad U=\left(\begin{array}{rrr}
-1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) .
$$

Bonus Problem 5 ($\mathbf{1 5}$ pts.) Let A be the matrix from Problem 1.
(i) Find all eigenvalues of A.
(ii) For each eigenvalue of A, find a basis for the associated eigenspace.

Solution: Eigenvalues of A : 4 and -1 . Basis for the eigenspace associated with the eigenvalue 4: $\{(1,1,1,1,1)\}$. Basis for the eigenspace associated with the eigenvalue -1 : $\{(-1,1,0,0,0),(-1,0,1,0,0),(-1,0,0,1,0),(-1,0,0,0,1)\}$.

The characteristic polynomial of the matrix A is computed in the same way as the determinant of A was evaluated in the solution of Problem 1 above:

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{rrrrr}
-\lambda & 1 & 1 & 1 & 1 \\
1 & -\lambda & 1 & 1 & 1 \\
1 & 1 & -\lambda & 1 & 1 \\
1 & 1 & 1 & -\lambda & 1 \\
1 & 1 & 1 & 1 & -\lambda
\end{array}\right|=\left|\begin{array}{ccccc}
4-\lambda & 4-\lambda & 4-\lambda & 4-\lambda & 4-\lambda \\
1 & -\lambda & 1 & 1 & 1 \\
1 & 1 & -\lambda & 1 & 1 \\
1 & 1 & 1 & -\lambda & 1 \\
1 & 1 & 1 & 1 & -\lambda
\end{array}\right| \\
&=(4-\lambda)\left|\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
1 & -\lambda & 1 & 1 & 1 \\
1 & 1 & -\lambda & 1 & 1 \\
1 & 1 & 1 & -\lambda & 1 \\
1 & 1 & 1 & 1 & -\lambda
\end{array}\right|=(4-\lambda)\left|\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
0 & -\lambda-1 & 0 & 0 & 0 \\
0 & 0 & -\lambda-1 & 0 & 0 \\
0 & 0 & 0 & -\lambda-1 & 0 \\
0 & 0 & 0 & 0 & -\lambda-1
\end{array}\right| \\
&=(4-\lambda)(-\lambda-1)^{4}=(4-\lambda)(1+\lambda)^{4} .
\end{aligned}
$$

The roots of this polynomial are 4 and -1 . Since 4 is a simple root, the associated eigenspace is one-dimensional. It is easy to observe that $(1,1,1,1,1)$ is an eigenvector for 4 . Therefore this vector forms a basis for the eigenspace.

All entries of the matrix $A+I$ are equal to 1 . It follows that the eigenspace associated to the eigenvalue -1 consists of all vectors $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{R}^{5}$ such that $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=0$. The general solution of this linear equation is

$$
\begin{aligned}
& \quad\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(-t_{1}-t_{2}-t_{3}-t_{4}, t_{1}, t_{2}, t_{3}, t_{4}\right) \\
& =t_{1}(-1,1,0,0,0)+t_{2}(-1,0,1,0,0)+t_{3}(-1,0,0,1,0)+t_{4}(-1,0,0,0,1), \quad t_{1}, t_{2}, t_{3}, t_{4} \in \mathbb{R}
\end{aligned}
$$

We obtain that vectors $(-1,1,0,0,0),(-1,0,1,0,0),(-1,0,0,1,0)$, and $(-1,0,0,0,1)$ form a basis for the eigenspace of A associated to the eigenvalue -1 .

Bonus Problem 5' (15 pts.) Let A be the matrix from Problem 1^{\prime}.
(i) Find all eigenvalues of A.
(ii) For each eigenvalue of A, find a basis for the associated eigenspace.

Solution: Eigenvalues of A : 5 and -1 . Basis for the eigenspace associated with the eigenvalue 5: $\{(1,1,1,1,1,1)\}$. Basis for the eigenspace associated with the eigenvalue -1 : $\{(-1,1,0,0,0,0),(-1,0,1,0,0,0),(-1,0,0,1,0,0),(-1,0,0,0,1,0),(-1,0,0,0,0,1)\}$.

