MATH 433 Applied Algebra Lecture 3: Prime factorisation (continued). Congruence classes. Modular arithmetic.

Unique prime factorisation

A positive integer p is **prime** if it has exactly two positive divisors, namely, 1 and p.

Prime factorisation of a positive integer $n \ge 2$ is a decomposition of *n* into a product of primes.

Theorem Any positive integer $n \ge 2$ admits a prime factorisation. This factorisation is unique up to rearranging the factors.

The **existence** of the factorisation is derived from a simple fact: if $p_1p_2...p_k$ is a prime factorisation of n and $q_1q_2...q_l$ is a prime factorisation of m, then $p_1p_2...p_kq_1q_2...q_l$ is a prime factorisation of nm. The **uniqueness** is derived from another observation: if a prime number p divides a product of primes $p_1p_2...p_k$ then one of the primes $p_1,...,p_k$ coincides with p.

Coprime numbers

Positive integers *a* and *b* are **relatively prime** (or **coprime**) if gcd(a, b) = 1.

Theorem Suppose that a and b are coprime integers. Then (i) a|bc implies a|c; (ii) a|c and b|c imply ab|c.

Idea of the proof: Since gcd(a, b) = 1, there are integers m and n such that ma + nb = 1. Then c = mac + nbc.

Corollary 1 If a prime number p divides the product $a_1a_2...a_n$, then p divides one of the integers $a_1,...,a_n$.

Corollary 2 If an integer *a* is divisible by pairwise coprime integers b_1, b_2, \ldots, b_n , then *a* is divisible by the product $b_1b_2 \ldots b_n$.

Let $a = p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$ and $b = p_1^{m_1} p_2^{m_2} \dots p_k^{m_k}$, where p_1, p_2, \dots, p_k are distinct primes and n_i, m_i are nonnegative integers.

Theorem (i) a divides b if and only if $n_i \le m_i$ for i = 1, 2, ..., k.

(ii) $gcd(a, b) = p_1^{s_1} p_2^{s_2} \dots p_k^{s_k}$, where $s_i = min(n_i, m_i)$. (iii) $lcm(a, b) = p_1^{t_1} p_2^{t_2} \dots p_k^{t_k}$, where $t_i = max(n_i, m_i)$.

Here lcm(a, b) denotes the **least common multiple** of *a* and *b*, that is, the smallest positive integer divisible by both *a* and *b*.

Fermat and Mersenne primes

Proposition For any integer $k \ge 2$ and any $x, y \in \mathbb{R}$,

$$x^{k} - y^{k} = (x - y)(x^{k-1} + x^{k-2}y + \cdots + xy^{k-2} + y^{k-1}).$$

If, in addition, k is odd, then

$$x^{k} + y^{k} = (x + y)(x^{k-1} - x^{k-2}y + \cdots - xy^{k-2} + y^{k-1}).$$

Corollary 1 (Mersenne) The number $2^n - 1$ is composite whenever *n* is composite.

(Hint: use the first formula with $x = 2^{n/k}$, y = 1, and k a prime divisor of n.)

Corollary 2 (Fermat) Let $n \ge 2$ be an integer. Then the number $2^n + 1$ is composite whenever n is not a power of 2. (Hint: use the second formula with $x = 2^{n/k}$, y = 1, and k an odd prime divisor of n.)

Mersenne primes are primes of the form $2^{p} - 1$, where *p* is prime. **Fermat primes** are primes of the form $2^{2^{n}} + 1$. Only finitely many Fermat and Mersenne primes are known.

Congruences

Let *n* be a postive integer. The integers *a* and *b* are called **congruent modulo** *n* if they have the same remainder when divided by *n*. An equivalent condition is that *n* divides the difference a - b.

Notation. $a \equiv b \mod n$ or $a \equiv b \pmod{n}$.

Proposition If $a \equiv b \mod n$ then for any integer *c*, (i) $a + cn \equiv b \mod n$; (ii) $a + c \equiv b + c \mod n$; (iii) $ac \equiv bc \mod n$.

Modular arithmetic

Given an integer a, the **congruence class of** a**modulo** n is the set of all integers congruent to amodulo n.

Notation. $[a]_n$ or simply [a]. Also, \overline{a} and $a + n\mathbb{Z}$.

For any integers a and b, we let $[a]_n + [b]_n = [a + b]_n$, $[a]_n \times [b]_n = [ab]_n$,