MATH 433
 Applied Algebra

Lecture 3:
Prime factorisation (continued).
Congruence classes.
Modular arithmetic.

Unique prime factorisation

A positive integer p is prime if it has exactly two positive divisors, namely, 1 and p.
Prime factorisation of a positive integer $n \geq 2$ is a decomposition of n into a product of primes.
Theorem Any positive integer $n \geq 2$ admits a prime factorisation. This factorisation is unique up to rearranging the factors.
The existence of the factorisation is derived from a simple fact: if $p_{1} p_{2} \ldots p_{k}$ is a prime factorisation of n and $q_{1} q_{2} \ldots q_{l}$ is a prime factorisation of m, then $p_{1} p_{2} \ldots p_{k} q_{1} q_{2} \ldots q_{l}$ is a prime factorisation of $n m$. The uniqueness is derived from another observation: if a prime number p divides a product of primes $p_{1} p_{2} \ldots p_{k}$ then one of the primes p_{1}, \ldots, p_{k} coincides with p.

Coprime numbers

Positive integers a and b are relatively prime (or coprime) if $\operatorname{gcd}(a, b)=1$.

Theorem Suppose that a and b are coprime integers. Then (i) $a \mid b c$ implies $a \mid c$;
(ii) $a \mid c$ and $b \mid c$ imply $a b \mid c$.

Idea of the proof: Since $\operatorname{gcd}(a, b)=1$, there are integers m and n such that $m a+n b=1$. Then $c=m a c+n b c$.

Corollary 1 If a prime number p divides the product $a_{1} a_{2} \ldots a_{n}$, then p divides one of the integers a_{1}, \ldots, a_{n}.

Corollary 2 If an integer a is divisible by pairwise coprime integers $b_{1}, b_{2}, \ldots, b_{n}$, then a is divisible by the product $b_{1} b_{2} \ldots b_{n}$.

Let $a=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{k}^{n_{k}}$ and $b=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{k}^{m_{k}}$, where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes and n_{i}, m_{i} are nonnegative integers.

Theorem (i) a divides b if and only if $n_{i} \leq m_{i}$ for $i=1,2, \ldots, k$.
(ii) $\operatorname{gcd}(a, b)=p_{1}^{s_{1}} p_{2}^{s_{2}} \ldots p_{k}^{s_{k}}$, where $s_{i}=\min \left(n_{i}, m_{i}\right)$.
(iii) $\operatorname{lcm}(a, b)=p_{1}^{t_{1}} p_{2}^{t_{2}} \ldots p_{k}^{t_{k}}$, where $t_{i}=\max \left(n_{i}, m_{i}\right)$.

Here $\operatorname{lcm}(a, b)$ denotes the least common multiple of a and b, that is, the smallest positive integer divisible by both a and b.

Fermat and Mersenne primes

Proposition For any integer $k \geq 2$ and any $x, y \in \mathbb{R}$,

$$
x^{k}-y^{k}=(x-y)\left(x^{k-1}+x^{k-2} y+\cdots+x y^{k-2}+y^{k-1}\right) .
$$

If, in addition, k is odd, then

$$
x^{k}+y^{k}=(x+y)\left(x^{k-1}-x^{k-2} y+\cdots-x y^{k-2}+y^{k-1}\right) .
$$

Corollary 1 (Mersenne) The number $2^{n}-1$ is composite whenever n is composite.
(Hint: use the first formula with $x=2^{n / k}, y=1$, and k a prime divisor of n.)
Corollary 2 (Fermat) Let $n \geq 2$ be an integer. Then the number $2^{n}+1$ is composite whenever n is not a power of 2 .
(Hint: use the second formula with $x=2^{n / k}, y=1$, and k an odd prime divisor of n.)
Mersenne primes are primes of the form $2^{p}-1$, where p is prime. Fermat primes are primes of the form $2^{2^{n}}+1$.
Only finitely many Fermat and Mersenne primes are known.

Congruences

Let n be a postive integer. The integers a and b are called congruent modulo n if they have the same remainder when divided by n. An equivalent condition is that n divides the difference $a-b$.

Notation. $a \equiv b \bmod n$ or $a \equiv b(\bmod n)$.
Proposition If $a \equiv b \bmod n$ then for any integer c,
(i) $a+c n \equiv b \bmod n$;
(ii) $a+c \equiv b+c \bmod n$;
(iii) $a c \equiv b c \bmod n$.

Modular arithmetic

Given an integer a, the congruence class of a modulo n is the set of all integers congruent to a modulo n.

Notation. [a] ${ }_{n}$ or simply [a].
Also, \bar{a} and $a+n \mathbb{Z}$.
For any integers a and b, we let

$$
\begin{gathered}
{[a]_{n}+[b]_{n}=[a+b]_{n},} \\
{[a]_{n} \times[b]_{n}=[a b]_{n},}
\end{gathered}
$$

