MATH 433 Applied Algebra

Lecture 4: Modular arithmetic (continued). Linear congruences.

Congruences

Let *n* be a postive integer. The integers *a* and *b* are called **congruent modulo** *n* if they have the same remainder when divided by *n*. An equivalent condition is that *n* divides the difference a - b.

Notation. $a \equiv b \mod n$ or $a \equiv b \pmod{n}$.

Examples. $12 \equiv 4 \mod 8$, $24 \equiv 0 \mod 6$, $31 \equiv -4 \mod 35$.

Proposition 1 If $a \equiv b \mod n$ then for any integer c, (i) $a + cn \equiv b \mod n$; (ii) $a + c \equiv b + c \mod n$; (iii) $ac \equiv bc \mod n$.

Proposition 2 Let $a, b, c, n \in \mathbb{Z}$, n > 0. (i) If $ac \equiv bc \mod n$ and gcd(c, n) = 1, then $a \equiv b \mod n$. (ii) If c > 0 and $ac \equiv bc \mod nc$, then $a \equiv b \mod n$.

Congruence classes

Given an integer a, the **congruence class of** a **modulo** n is the set of all integers congruent to a modulo n.

Notation. $[a]_n$ or simply [a]. Also denoted $a + n\mathbb{Z}$ as $[a]_n = \{a + nk : k \in \mathbb{Z}\}.$

Examples. $[0]_2$ is the set of even integers, $[1]_2$ is the set of odd integers, $[2]_4$ is the set of even integers not divisible by 4.

If *n* divides a positive integer *m*, then every congruence class modulo *n* is the union of m/n congruence classes modulo *m*. For example, $[2]_4 = [2]_8 \cup [6]_8$.

The congruence class $[0]_n$ is called the **zero congruence** class. It consists of the integers divisible by n.

The set of all congruence classes modulo n is denoted \mathbb{Z}_n .

Modular arithmetic

Modular arithmetic is an arithmetic on the set \mathbb{Z}_n for some $n \ge 1$. The arithmetic operations on \mathbb{Z}_n are defined as follows. For any integers *a* and *b*, we let

$$[a]_n + [b]_n = [a + b]_n, [a]_n - [b]_n = [a - b]_n, [a]_n \times [b]_n = [ab]_n.$$

We need to check that these operations are well defined, namely, they do not depend on the choice of representatives a, b for the congruence classes.

Proposition If $a \equiv a' \mod n$ and $b \equiv b' \mod n$, then (i) $a + b \equiv a' + b' \mod n$; (ii) $a - b \equiv a' - b' \mod n$; (iii) $ab \equiv a'b' \mod n$.

Proof: Since *n* divides a - a' and b - b', it also divides (a + b) - (a' + b') = (a - a') + (b - b'), (a - b) - (a' - b') = (a - a') - (b - b'), and ab - a'b' = a(b - b') + (a - a')b'.

Invertible congruence classes

We say that a congruence class $[a]_n$ is **invertible** (or the integer *a* is **invertible modulo** *n*) if there exists a congruence class $[b]_n$ such that $[a]_n[b]_n = [1]_n$. If this is the case, then $[b]_n$ is called the **inverse** of $[a]_n$ and denoted $[a]_n^{-1}$.

The set of all invertible congruence classes in \mathbb{Z}_n is denoted G_n or \mathbb{Z}_n^* .

A nonzero congruence class $[a]_n$ is called a **zero-divisor** if $[a]_n[b]_n = [0]_n$ for some $[b]_n \neq [0]_n$.

Examples. • In \mathbb{Z}_6 , the congruence classes $[1]_6$ and $[5]_6$ are invertible since $[1]_n^2 = [5]_6^2 = [1]_6$. The classes $[2]_6$, $[3]_6$, and $[4]_6$ are zero-divisors since $[2]_6[3]_6 = [4]_6[3]_6 = [0]_6$.

• In \mathbb{Z}_7 , all nonzero congruence classes are invertible since $[1]_7^2 = [2]_7[4]_7 = [3]_7[5]_7 = [6]_7^2 = [1]_7$.

Proposition (i) The inverse $[a]_n^{-1}$ is always unique. (ii) If $[a]_n$ and $[b]_n$ are invertible, then the product $[a]_n[b]_n$ is also invertible and $([a]_n[b]_n)^{-1} = [a]_n^{-1}[b]_n^{-1}$. (iii) The set G_n is closed under multiplication. (iv) Zero-divisors are not invertible.

Proof: (i) Suppose that $[b]_n$ and $[b']_n$ are inverses of $[a]_n$. Then $[b]_n = [b]_n [1]_n = [b]_n [a]_n [b']_n = [1]_n [b']_n = [b']_n$. (ii) $([a]_n [b]_n)([a]_n^{-1} [b]_n^{-1}) = [a]_n [a]_n^{-1} \cdot [b]_n [b]_n^{-1}$ $= [1]_n [1]_n = [1]_n$. (iii) is a reformulation of the first part of (ii). (iv) If $[a]_n$ is invertible and $[a]_n [b]_n = [0]_n$, then $[b]_n = [1]_n [b]_n = [a]_n^{-1} [a]_n [b]_n = [a]_n^{-1} [0]_n = [0]_n$. **Theorem** A nonzero congruence class $[a]_n$ is invertible if and only if gcd(a, n) = 1. Otherwise $[a]_n$ is a zero-divisor.

Proof: Let $d = \gcd(a, n)$. If d > 1 then n/d and a/d are integers, $\lfloor n/d \rfloor_n \neq \lfloor 0 \rfloor_n$, and $\lfloor a \rfloor_n \lfloor n/d \rfloor_n = \lfloor an/d \rfloor_n = \lfloor a/d \rfloor_n \lfloor n \rfloor_n = \lfloor a/d \rfloor_n \lfloor 0 \rfloor_n$. Hence $\lfloor a \rfloor_n$ is a zero-divisor.

Now consider the case gcd(a, n) = 1. In this case 1 is an integral linear combination of a and n: ma + kn = 1 for some $m, k \in \mathbb{Z}$. Then $[1]_n = [ma + kn]_n = [ma]_n = [m]_n[a]_n$. Thus $[a]_n$ is invertible and $[a]_n^{-1} = [m]_n$. **Problem.** Find the inverse of 23 modulo 107.

Numbers 23 and 107 are coprime (they are actually prime). We use the matrix method to represent 1 as an integral linear combination of these numbers.

$$\begin{pmatrix} 1 & 0 & | & 107 \\ 0 & 1 & | & 23 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -4 & | & 15 \\ 0 & 1 & | & 23 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -4 & | & 15 \\ -1 & 5 & | & 8 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 2 & -9 & | & 7 \\ -1 & 5 & | & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -9 & | & 7 \\ -3 & 14 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 23 & -107 & | & 0 \\ -3 & 14 & | & 1 \end{pmatrix}$$

Hence $(-3) \cdot 107 + 14 \cdot 23 = 1$. It follows that $[1]_{107} = [(-3) \cdot 107 + 14 \cdot 23]_{107} = [14 \cdot 23]_{107} = [14]_{107} [23]_{107}$. Thus $[23]_{107}^{-1} = [14]_{107}$.

Linear congruences

Linear congruence is a congruence of the form $ax \equiv b \mod n$, where x is an integer variable. We can regard it as a linear equation in \mathbb{Z}_n : $[a]_n X = [b]_n$.

Theorem The linear congruence $ax \equiv b \mod n$ has a solution if and only if $d = \gcd(a, n)$ divides b. If this is the case then the solution set consists of d congruence classes modulo n that form a single congruence class modulo n/d.

Proof: If x is a solution then ax = b + kn for some $k \in \mathbb{Z}$. Hence b = ax - kn, which is divisible by gcd(a, n).

Conversely, assume that d divides b. Then the linear congruence is equivalent to $a'x \equiv b' \mod m$, where a' = a/d, b' = b/d and m = n/d. In other words, $[a']_m X = [b']_m$. Now gcd(a', m) = gcd(a/d, n/d) = gcd(a, n)/d = 1. Hence $[a']_m$ is invertible. Then the solution set is $X = [a']_m^{-1}[b']_m$, a congruence class modulo n/d.

Problem 1. Solve the congruence $12x \equiv 6 \mod 21$.

$$\iff 4x \equiv 2 \mod 7 \iff 2x \equiv 1 \mod 7$$
$$\iff [x]_7 = [2]_7^{-1} = [4]_7$$
$$\iff [x]_{21} = [4]_{21} \text{ or } [11]_{21} \text{ or } [18]_{21}.$$

Problem 2. Solve the congruence $23x \equiv 6 \mod 107$.

The numbers 23 and 107 are coprime. We already know that $[23]_{107}^{-1} = [14]_{107}$. Hence $[x]_{107} = [23]_{107}^{-1} [6]_{107} = [14]_{107} [6]_{107} = [84]_{107}$.