MATH 433

Applied Algebra

Lecture 4:
 Modular arithmetic (continued).
 Linear congruences.

Congruences

Let n be a postive integer. The integers a and b are called congruent modulo n if they have the same remainder when divided by n. An equivalent condition is that n divides the difference $a-b$.
Notation. $a \equiv b \bmod n$ or $a \equiv b(\bmod n)$.
Examples. $12 \equiv 4 \bmod 8,24 \equiv 0 \bmod 6,31 \equiv-4 \bmod 35$.
Proposition 1 If $a \equiv b \bmod n$ then for any integer c,
(i) $a+c n \equiv b \bmod n$;
(ii) $a+c \equiv b+c \bmod n$;
(iii) $a c \equiv b c \bmod n$.

Proposition 2 Let $a, b, c, n \in \mathbb{Z}, n>0$.
(i) If $a c \equiv b c \bmod n$ and $\operatorname{gcd}(c, n)=1$, then $a \equiv b \bmod n$.
(ii) If $c>0$ and $a c \equiv b c \bmod n c$, then $a \equiv b \bmod n$.

Congruence classes

Given an integer a, the congruence class of a modulo n is the set of all integers congruent to a modulo n.
Notation. [a] n or simply [a]. Also denoted $a+n \mathbb{Z}$ as $[a]_{n}=\{a+n k: k \in \mathbb{Z}\}$.
Examples. $[0]_{2}$ is the set of even integers, $[1]_{2}$ is the set of odd integers, [2] $]_{4}$ is the set of even integers not divisible by 4 .

If n divides a positive integer m, then every congruence class modulo n is the union of m / n congruence classes modulo m. For example, $[2]_{4}=[2]_{8} \cup[6]_{8}$.
The congruence class $[0]_{n}$ is called the zero congruence class. It consists of the integers divisible by n.

The set of all congruence classes modulo n is denoted \mathbb{Z}_{n}.

Modular arithmetic

Modular arithmetic is an arithmetic on the set \mathbb{Z}_{n} for some $n \geq 1$. The arithmetic operations on \mathbb{Z}_{n} are defined as follows. For any integers a and b, we let

$$
\begin{gathered}
{[a]_{n}+[b]_{n}=[a+b]_{n},} \\
{[a]_{n}-[b]_{n}=[a-b]_{n},} \\
{[a]_{n} \times[b]_{n}=[a b]_{n} .}
\end{gathered}
$$

We need to check that these operations are well defined, namely, they do not depend on the choice of representatives a, b for the congruence classes.
Proposition If $a \equiv a^{\prime} \bmod n$ and $b \equiv b^{\prime} \bmod n$, then
(i) $a+b \equiv a^{\prime}+b^{\prime} \bmod n$; (ii) $a-b \equiv a^{\prime}-b^{\prime} \bmod n$; (iii) $a b \equiv a^{\prime} b^{\prime} \bmod n$.

Proof: Since n divides $a-a^{\prime}$ and $b-b^{\prime}$, it also divides $(a+b)-\left(a^{\prime}+b^{\prime}\right)=\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right),(a-b)-\left(a^{\prime}-b^{\prime}\right)=$ $=\left(a-a^{\prime}\right)-\left(b-b^{\prime}\right)$, and $a b-a^{\prime} b^{\prime}=a\left(b-b^{\prime}\right)+\left(a-a^{\prime}\right) b^{\prime}$.

Invertible congruence classes

We say that a congruence class [a]n is invertible (or the integer a is invertible modulo n) if there exists a congruence class $[b]_{n}$ such that $[a]_{n}[b]_{n}=[1]_{n}$. If this is the case, then $[b]_{n}$ is called the inverse of $[a]_{n}$ and denoted $[a]_{n}^{-1}$.
The set of all invertible congruence classes in \mathbb{Z}_{n} is denoted G_{n} or \mathbb{Z}_{n}^{*}.

A nonzero congruence class [a] $]_{n}$ is called a zero-divisor if $[a]_{n}[b]_{n}=[0]_{n}$ for some $[b]_{n} \neq[0]_{n}$.

Examples. - In \mathbb{Z}_{6}, the congruence classes $[1]_{6}$ and $[5]_{6}$ are invertible since $[1]_{n}^{2}=[5]_{6}^{2}=[1]_{6}$. The classes $[2]_{6},[3]_{6}$, and $[4]_{6}$ are zero-divisors since $[2]_{6}[3]_{6}=[4]_{6}[3]_{6}=[0]_{6}$.

- In \mathbb{Z}_{7}, all nonzero congruence classes are invertible since $[1]_{7}^{2}=[2]_{7}[4]_{7}=[3]_{7}[5]_{7}=[6]_{7}^{2}=[1]_{7}$.

Proposition (i) The inverse $[a]_{n}^{-1}$ is always unique.
(ii) If $[a]_{n}$ and $[b]_{n}$ are invertible, then the product $[a]_{n}[b]_{n}$ is also invertible and $\left([a]_{n}[b]_{n}\right)^{-1}=[a]_{n}^{-1}[b]_{n}^{-1}$.
(iii) The set G_{n} is closed under multiplication.
(iv) Zero-divisors are not invertible.

Proof: (i) Suppose that $[b]_{n}$ and $\left[b^{\prime}\right]_{n}$ are inverses of $[a]_{n}$.
Then $[b]_{n}=[b]_{n}[1]_{n}=[b]_{n}[a]_{n}\left[b^{\prime}\right]_{n}=[1]_{n}\left[b^{\prime}\right]_{n}=\left[b^{\prime}\right]_{n}$.
(ii) $\left([a]_{n}[b]_{n}\right)\left([a]_{n}^{-1}[b]_{n}^{-1}\right)=[a]_{n}[a]_{n}^{-1} \cdot[b]_{n}[b]_{n}^{-1}$
$=[1]_{n}[1]_{n}=[1]_{n}$.
(iii) is a reformulation of the first part of (ii).
(iv) If $[a]_{n}$ is invertible and $[a]_{n}[b]_{n}=[0]_{n}$, then
$[b]_{n}=[1]_{n}[b]_{n}=[a]_{n}^{-1}[a]_{n}[b]_{n}=[a]_{n}^{-1}[0]_{n}=[0]_{n}$.

Theorem A nonzero congruence class $[a]_{n}$ is invertible if and only if $\operatorname{gcd}(a, n)=1$. Otherwise [a] ${ }_{n}$ is a zero-divisor.

Proof: Let $d=\operatorname{gcd}(a, n)$. If $d>1$ then n / d and a / d are integers, $[n / d]_{n} \neq[0]_{n}$, and $[a]_{n}[n / d]_{n}=$ $=[a n / d]_{n}=[a / d]_{n}[n]_{n}=[a / d]_{n}[0]_{n}=[0]_{n}$. Hence $[a]_{n}$ is a zero-divisor.
Now consider the case $\operatorname{gcd}(a, n)=1$. In this case 1 is an integral linear combination of a and n : $m a+k n=1$ for some $m, k \in \mathbb{Z}$. Then
$[1]_{n}=[m a+k n]_{n}=[m a]_{n}=[m]_{n}[a]_{n}$.
Thus $[a]_{n}$ is invertible and $[a]_{n}^{-1}=[m]_{n}$.

Problem. Find the inverse of 23 modulo 107.
Numbers 23 and 107 are coprime (they are actually prime). We use the matrix method to represent 1 as an integral linear combination of these numbers.

$$
\begin{aligned}
& \left(\begin{array}{rr|r}
1 & 0 & 107 \\
0 & 1 & 23
\end{array}\right) \rightarrow\left(\begin{array}{rr|r}
1 & -4 & 15 \\
0 & 1 & 23
\end{array}\right) \rightarrow\left(\begin{array}{rr|r}
1 & -4 & 15 \\
-1 & 5 & 8
\end{array}\right) \\
& \rightarrow\left(\begin{array}{rr|r}
2 & -9 & 7 \\
-1 & 5 & 8
\end{array}\right) \rightarrow\left(\begin{array}{rr|r}
2 & -9 & 7 \\
-3 & 14 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rr}
23 & -107 \\
-3 & 14
\end{array}\right)
\end{aligned}
$$

Hence $(-3) \cdot 107+14 \cdot 23=1$. It follows that $[1]_{107}=[(-3) \cdot 107+14 \cdot 23]_{107}=[14 \cdot 23]_{107}=[14]_{107}[23]_{107}$.
Thus $[23]_{107}^{-1}=[14]_{107}$.

Linear congruences

Linear congruence is a congruence of the form $a x \equiv b \bmod n$, where x is an integer variable. We can regard it as a linear equation in $\mathbb{Z}_{n}:[a]_{n} X=[b]_{n}$.

Theorem The linear congruence $a x \equiv b \bmod n$ has a solution if and only if $d=\operatorname{gcd}(a, n)$ divides b. If this is the case then the solution set consists of d congruence classes modulo n that form a single congruence class modulo n / d.
Proof: If x is a solution then $a x=b+k n$ for some $k \in \mathbb{Z}$. Hence $b=a x-k n$, which is divisible by $\operatorname{gcd}(a, n)$.
Conversely, assume that d divides b. Then the linear congruence is equivalent to $a^{\prime} x \equiv b^{\prime} \bmod m$, where $a^{\prime}=a / d$, $b^{\prime}=b / d$ and $m=n / d$. In other words, $\left[a^{\prime}\right]_{m} X=\left[b^{\prime}\right]_{m}$. Now $\operatorname{gcd}\left(a^{\prime}, m\right)=\operatorname{gcd}(a / d, n / d)=\operatorname{gcd}(a, n) / d=1$. Hence $\left[a^{\prime}\right]_{m}$ is invertible. Then the solution set is $X=\left[a^{\prime}\right]_{m}^{-1}\left[b^{\prime}\right]_{m}$, a congruence class modulo n / d.

Problem 1. Solve the congruence

 $12 x \equiv 6 \bmod 21$.$\Longleftrightarrow 4 x \equiv 2 \bmod 7 \Longleftrightarrow 2 x \equiv 1 \bmod 7$
$\Longleftrightarrow[x]_{7}=[2]_{7}^{-1}=[4]_{7}$
$\Longleftrightarrow[x]_{21}=[4]_{21}$ or $[11]_{21}$ or $[18]_{21}$.
Problem 2. Solve the congruence $23 x \equiv 6 \bmod 107$.

The numbers 23 and 107 are coprime. We already know that $[23]_{107}^{-1}=[14]_{107}$.
Hence $[x]_{107}=[23]_{107}^{-1}[6]_{107}=[14]_{107}[6]_{107}=[84]_{107}$.

