
MATH 433

Applied Algebra

Lecture 4:
Modular arithmetic (continued).

Linear congruences.



Congruences

Let n be a postive integer. The integers a and b are called
congruent modulo n if they have the same remainder when
divided by n. An equivalent condition is that n divides the
difference a − b.

Notation. a ≡ b mod n or a ≡ b (mod n).

Examples. 12 ≡ 4 mod 8, 24 ≡ 0 mod 6, 31 ≡ −4 mod 35.

Proposition 1 If a ≡ b mod n then for any integer c,
(i) a + cn ≡ b mod n;
(ii) a + c ≡ b + c mod n;
(iii) ac ≡ bc mod n.

Proposition 2 Let a, b, c, n ∈ Z, n > 0.
(i) If ac ≡ bc mod n and gcd(c, n) = 1, then a ≡ b mod n.
(ii) If c > 0 and ac ≡ bc mod nc, then a ≡ b mod n.



Congruence classes

Given an integer a, the congruence class of a modulo n is
the set of all integers congruent to a modulo n.

Notation. [a]n or simply [a]. Also denoted a + nZ as
[a]n = {a + nk : k ∈ Z}.

Examples. [0]2 is the set of even integers, [1]2 is the set of
odd integers, [2]4 is the set of even integers not divisible by 4.

If n divides a positive integer m, then every congruence class
modulo n is the union of m/n congruence classes modulo m.
For example, [2]4 = [2]8 ∪ [6]8.

The congruence class [0]n is called the zero congruence
class. It consists of the integers divisible by n.

The set of all congruence classes modulo n is denoted Zn.



Modular arithmetic

Modular arithmetic is an arithmetic on the set Zn for some
n ≥ 1. The arithmetic operations on Zn are defined as
follows. For any integers a and b, we let

[a]n + [b]n = [a + b]n,

[a]n − [b]n = [a − b]n,

[a]n × [b]n = [ab]n.

We need to check that these operations are well defined,
namely, they do not depend on the choice of representatives
a, b for the congruence classes.

Proposition If a ≡ a′ mod n and b ≡ b′
mod n, then

(i) a + b ≡ a′ + b′
mod n; (ii) a − b ≡ a′ − b′

mod n;
(iii) ab ≡ a′b′

mod n.

Proof: Since n divides a − a′ and b − b′, it also divides
(a + b)−(a′ + b′) = (a − a′)+(b − b′), (a − b)−(a′ − b′) =
= (a − a′)−(b − b′), and ab − a′b′ = a(b − b′)+(a − a′)b′.



Invertible congruence classes

We say that a congruence class [a]n is invertible (or the
integer a is invertible modulo n) if there exists a congruence
class [b]n such that [a]n[b]n = [1]n. If this is the case, then
[b]n is called the inverse of [a]n and denoted [a]−1

n
.

The set of all invertible congruence classes in Zn is denoted
Gn or Z

∗

n
.

A nonzero congruence class [a]n is called a zero-divisor if
[a]n[b]n = [0]n for some [b]n 6= [0]n.

Examples. • In Z6, the congruence classes [1]6 and [5]6 are
invertible since [1]2

n
= [5]2

6
= [1]6. The classes [2]6, [3]6, and

[4]6 are zero-divisors since [2]6[3]6 = [4]6[3]6 = [0]6.

• In Z7, all nonzero congruence classes are invertible since
[1]2

7
= [2]7[4]7 = [3]7[5]7 = [6]2

7
= [1]7.



Proposition (i) The inverse [a]−1

n
is always unique.

(ii) If [a]n and [b]n are invertible, then the product [a]n[b]n is
also invertible and ([a]n[b]n)

−1 = [a]−1

n
[b]−1

n
.

(iii) The set Gn is closed under multiplication.
(iv) Zero-divisors are not invertible.

Proof: (i) Suppose that [b]n and [b′]n are inverses of [a]n.
Then [b]n = [b]n[1]n = [b]n[a]n[b

′]n = [1]n[b
′]n = [b′]n.

(ii) ([a]n[b]n)([a]
−1

n
[b]−1

n
) = [a]n[a]

−1

n
· [b]n[b]−1

n

= [1]n[1]n = [1]n.

(iii) is a reformulation of the first part of (ii).

(iv) If [a]n is invertible and [a]n[b]n = [0]n, then
[b]n = [1]n[b]n = [a]−1

n
[a]n[b]n = [a]−1

n
[0]n = [0]n.



Theorem A nonzero congruence class [a]n is

invertible if and only if gcd(a, n) = 1. Otherwise
[a]n is a zero-divisor.

Proof: Let d = gcd(a, n). If d > 1 then n/d and

a/d are integers, [n/d ]n 6= [0]n, and [a]n[n/d ]n =
= [an/d ]n = [a/d ]n[n]n = [a/d ]n[0]n = [0]n. Hence

[a]n is a zero-divisor.

Now consider the case gcd(a, n) = 1. In this case 1
is an integral linear combination of a and n:

ma + kn = 1 for some m, k ∈ Z. Then
[1]n = [ma + kn]n = [ma]n = [m]n[a]n.

Thus [a]n is invertible and [a]−1

n
= [m]n.



Problem. Find the inverse of 23 modulo 107.

Numbers 23 and 107 are coprime (they are actually prime).
We use the matrix method to represent 1 as an integral linear
combination of these numbers.
(

1 0 107
0 1 23

)

→

(

1 −4 15
0 1 23

)

→

(

1 −4 15
−1 5 8

)

→

(

2 −9 7
−1 5 8

)

→

(

2 −9 7
−3 14 1

)

→

(

23 −107 0
−3 14 1

)

Hence (−3) · 107 + 14 · 23 = 1. It follows that

[1]107 = [(−3) · 107 + 14 · 23]107 = [14 · 23]107 = [14]107[23]107.

Thus [23]−1

107
= [14]107.



Linear congruences

Linear congruence is a congruence of the form
ax ≡ b mod n, where x is an integer variable. We can regard
it as a linear equation in Zn: [a]nX = [b]n.

Theorem The linear congruence ax ≡ b mod n has a
solution if and only if d = gcd(a, n) divides b. If this is the
case then the solution set consists of d congruence classes
modulo n that form a single congruence class modulo n/d .

Proof: If x is a solution then ax = b + kn for some k ∈ Z.
Hence b = ax − kn, which is divisible by gcd(a, n).

Conversely, assume that d divides b. Then the linear
congruence is equivalent to a′x ≡ b′

mod m, where a′ = a/d ,
b′ = b/d and m = n/d . In other words, [a′]mX = [b′]m.
Now gcd(a′, m) = gcd(a/d , n/d) = gcd(a, n)/d = 1. Hence
[a′]m is invertible. Then the solution set is X = [a′]−1

m
[b′]m, a

congruence class modulo n/d .



Problem 1. Solve the congruence
12x ≡ 6 mod 21.

⇐⇒ 4x ≡ 2 mod 7 ⇐⇒ 2x ≡ 1 mod 7
⇐⇒ [x ]7 = [2]−1

7
= [4]7

⇐⇒ [x ]21 = [4]21 or [11]21 or [18]21.

Problem 2. Solve the congruence

23x ≡ 6 mod 107.

The numbers 23 and 107 are coprime. We already

know that [23]−1

107
= [14]107.

Hence [x ]107 = [23]−1

107
[6]107 = [14]107[6]107 = [84]107.


