MATH 433
 Applied Algebra

 Lecture 5:Chinese remainder theorem.
Fermat's little theorem.
Euler's theorem.

Congruence classes

Given an integer a, the congruence class of a modulo n is the set of all integers congruent to a modulo $n: \quad[a]_{n}=\{a+n k: k \in \mathbb{Z}\}$.

The set of all congruence classes modulo n is denoted \mathbb{Z}_{n}.

The arithmetic operations on \mathbb{Z}_{n} are defined as follows. For any integers a and b, we let

$$
\begin{gathered}
{[a]_{n}+[b]_{n}=[a+b]_{n},} \\
{[a]_{n}-[b]_{n}=[a-b]_{n},} \\
{[a]_{n} \times[b]_{n}=[a b]_{n} .}
\end{gathered}
$$

Invertible congruence classes

We say that a congruence class $[a]_{n}$ is invertible (or the integer a is invertible modulo n) if there exists a congruence class $[b]_{n}$ such that $[a]_{n}[b]_{n}=[1]_{n}$. If this is the case, then $[b]_{n}$ is called the inverse of $[a]_{n}$ and denoted $[a]_{n}^{-1}$.

Theorem A nonzero congruence class $[a]_{n}$ is invertible if and only if $\operatorname{gcd}(a, n)=1$.

The set of all invertible congruence classes in \mathbb{Z}_{n} is denoted G_{n} or \mathbb{Z}_{n}^{*}. This set is closed under multiplication.

Chinese Remainder Theorem

Theorem Let $n, m \geq 2$ be relatively prime integers and a, b be any integers. Then the system of congruences

$$
\left\{\begin{array}{l}
x \equiv a \bmod n \\
x \equiv b \bmod m
\end{array}\right.
$$

has a solution. Moreover, this solution is unique modulo nm.
Proof: Since $\operatorname{gcd}(n, m)=1$, we have $s n+t m=1$ for some integers s, t. Let $c=b s n+a t m$. It is easy to check that c is a solution. Also, any element of $[c]_{n m}$ is a solution.
Conversely, if x is a solution, then $n \mid(x-c)$ and $m \mid(x-c)$, which implies that $n m \mid(x-c)$, i.e., $x \in[c]_{n m}$.

Corollary Let $n_{1}, n_{2}, \ldots, n_{k} \geq 2$ be pairwise coprime integers and $a_{1}, a_{2}, \ldots, a_{k}$ be any integers. Then the system of congruences $x \equiv a_{i} \bmod n_{i}, 1 \leq i \leq k$, has a solution which is unique modulo $n_{1} n_{2} \ldots n_{k}$.

Problem. Solve simultaneous congruences
$\left\{\begin{array}{l}x \equiv 3 \bmod 12, \\ x \equiv 2 \bmod 29 .\end{array}\right.$
The moduli 12 and 29 are coprime. First we use the Euclidean algorithm to represent 1 as an integral linear combination of 12 and 29:
$\left(\begin{array}{ll|l}1 & 0 & 12 \\ 0 & 1 & 29\end{array}\right) \rightarrow\left(\begin{array}{rr|r}1 & 0 & 12 \\ -2 & 1 & 5\end{array}\right) \rightarrow\left(\begin{array}{rr|r}5 & -2 & 2 \\ -2 & 1 & 5\end{array}\right)$
$\rightarrow\left(\begin{array}{rr|r}5 & -2 & 2 \\ -12 & 5 & 1\end{array}\right) \rightarrow\left(\begin{array}{rr|r}29 & -12 & 0 \\ -12 & 5 & 1\end{array}\right)$.
Hence $(-12) \cdot 12+5 \cdot 29=1$. Let $x_{1}=5 \cdot 29=145$, $x_{2}=(-12) \cdot 12=-144$. Then

$$
\left\{\begin{array} { l }
{ x _ { 1 } \equiv 1 \operatorname { m o d } 1 2 , } \\
{ x _ { 1 } \equiv 0 \operatorname { m o d } 2 9 . }
\end{array} \quad \left\{\begin{array}{l}
x_{2} \equiv 0 \bmod 12, \\
x_{2} \equiv 1 \bmod 29 .
\end{array}\right.\right.
$$

It follows that one solution is $x=3 x_{1}+2 x_{2}=147$. The other solutions form the congruence class of 147 modulo $12 \cdot 29=348$.

Problem. Solve simultaneous congruences
$\left\{\begin{array}{l}x \equiv 1 \bmod 3, \\ x \equiv 2 \bmod 4, \\ x \equiv 3 \bmod 5 .\end{array}\right.$
First we solve the first two congruences. Let $x_{1}=4, x_{2}=-3$.
Then $x_{1} \equiv 1 \bmod 3, x_{2} \equiv 0 \bmod 3, x_{1} \equiv 0 \bmod 4$, $x_{2} \equiv 1 \bmod 4$. It follows that $x_{1}+2 x_{2}=-2$ is a solution. The general solution is $x \equiv-2 \bmod 12$.
Now it remains to solve the system
$\left\{\begin{array}{l}x \equiv-2 \bmod 12, \\ x \equiv 3 \bmod 5 .\end{array}\right.$
We need to represent 1 as an integral linear combination of 12 and 5: $1=(-2) \cdot 12+5 \cdot 5$. Then a particular solution is $x=3 \cdot(-2) \cdot 12+(-2) \cdot 5 \cdot 5=-122$. The general solution is $x \equiv-122 \bmod 60$, which is the same as $x \equiv-2 \bmod 60$.

Finite multiplicative order

A congruence class $[a]_{n}$ is said to have finite (multiplicative) order if $[a]_{n}^{k}=[1]_{n}$ for some positive integer k. The smallest k with this property is called the order of $[a]_{n}$. We also say that k is the order of a modulo n.

Theorem A congruence class [a] ${ }_{n}$ has finite order if and only if it is invertible (i.e., a is coprime with n).
Proof: If $[a]_{n}$ has finite order k, then $[1]_{n}=[a]_{n}^{k}=[a]_{n}[a]_{n}^{k-1}$, which implies that $[a]_{n}^{-1}=[a]_{n}^{k-1}$.
Conversely, suppose that $[a]_{n}$ is invertible. Since the set \mathbb{Z}_{n} is finite, the sequence $[a]_{n},[a]_{n}^{2},[a]_{n}^{3}, \ldots$ contains repetitions. Hence for some integers $0<r<s$ we will have

$$
[a]_{n}^{r}=[a]_{n}^{s} \Longrightarrow[a]_{n}^{r}[a]_{n}^{-r}=[a]_{n}^{s}[a]_{n}^{-r} \Longrightarrow[1]_{n}=[a]_{n}^{s-r} .
$$

Examples. $G_{7}=\{[1],[2],[3],[4],[5],[6]\}$.
$[1]^{1}=[1]$,
$[2]^{2}=[4], \quad[2]^{3}=[8]=[1]$,
$[3]^{2}=[9]=[2], \quad[3]^{3}=[2][3]=[6], \quad[3]^{4}=[2]^{2}=[4]$,
$[3]^{5}=[4][3]=[5], \quad[3]^{6}=[3][5]=[1]$.
$[4]^{2}=[16]=[2], \quad[4]^{3}=[4][2]=[1]$.
$[5]^{2}=[25]=[4], \quad[5]^{3}=[4][5]=[-1], \quad[5]^{4}=[-1][5]=[2]$,
$[5]^{5}=[2][5]=[3], \quad[5]^{6}=[3][5]=[1]$.
$[6]^{2}=[-1]^{2}=[1]$.
Thus [1] has order 1, [6] has order 2, [2] and [4] have order 3, and [3] and [5] have order 6.

- $G_{12}=\{[1],[5],[7],[11]\}$.
$[1]^{1}=[1], \quad[5]^{2}=[25]=[1], \quad[7]^{2}=[-5]^{2}=[25]=[1]$,
$[11]^{2}=[-1]^{2}=[1]$.
Thus [1] has order 1 while [5], [7], and [11] have order 2.

Fermat's Little Theorem Let p be a prime number. Then $a^{p-1} \equiv 1 \bmod p$ for every integer a not divisible by p.
Proof: Consider two lists of congruence classes modulo p :

$$
[1],[2], \ldots,[p-1] \text { and }[a][1],[a][2], \ldots,[a][p-1] .
$$

The first one is the list of all elements of G_{p}. Since a is not a multiple of p, it's class [a] is in G_{p} as well. Hence the second list also consists of elements from G_{p}. Also, all elements in the second list are distinct as
$[a][n]=[a][m] \Longrightarrow[a]^{-1}[a][n]=[a]^{-1}[a][m] \Longrightarrow[n]=[m]$.
It follows that the second list consists of the same elements as the first (arranged in a different way). Therefore

$$
[a][1] \cdot[a][2] \cdots[a][p-1]=[1] \cdot[2] \cdots[p-1] .
$$

Hence $[a]^{p-1} X=X$, where $X=[1] \cdot[2] \cdots[p-1]$. Note that $X \in G_{p}$ since G_{p} is closed under multiplication. That is, X is invertible. Then $[a]^{p-1} X X^{-1}=X X^{-1}$ $\Longrightarrow[a]^{p-1}[1]=[1] \Longrightarrow\left[a^{p-1}\right]=[1]$.

Corollary 1 Let p be a prime number. Then $a^{p} \equiv a \bmod p$ for every integer a (that is, $a^{p}-a$ is a multiple of p).

Corollary 2 Let a be an integer not divisible by a prime number p. Then the order of a modulo p is a divisor of $p-1$.
Proof: Let k be the order of a modulo p. We have $p-1=k q+r$, where q is the quotient and r is the remainder of $p-1$ by k. By Fermat's little theorem, $[a]^{p-1}=[1]$. Then $[a]^{r}=[a]^{p-1-k q}=[a]^{p-1}\left([a]^{k}\right)^{-q}=[1]$. Since $0 \leq r<k$, it follows that $r=0$.

Problem. Find the remainder of 12^{50} under division by 17 . Since 17 is prime and 12 is not a multiple of 17 , we have $[12]_{17}^{16}=[1]_{17}$. Then $\left[12^{50}\right]=[12]^{50}=[12]^{3 \cdot 16+2}=$ $=\left([12]^{16}\right)^{3} \cdot[12]^{2}=[12]^{2}=[-5]^{2}=[25]=[8]$. Hence the remainder is 8 .

Theorem (Euler) Let $n \geq 2$ and $\phi(n)$ be the number of elements in G_{n}. Then $a^{\phi(n)} \equiv 1 \bmod n$ for every integer a coprime with n.
Proof: Let $\left[b_{1}\right],\left[b_{2}\right], \ldots,\left[b_{m}\right]$ be the list of all elements of G_{n}. Note that $m=\phi(n)$. Consider another list:

$$
[a]\left[b_{1}\right],[a]\left[b_{2}\right], \ldots,[a]\left[b_{m}\right] .
$$

Since $\operatorname{gcd}(a, n)=1$, the congruence class $[a]_{n}$ is in G_{n} as well. Hence the second list also consists of elements from G_{n}. Also, all elements in the second list are distinct as $[a][b]=[a]\left[b^{\prime}\right] \Longrightarrow[a]^{-1}[a][b]=[a]^{-1}[a]\left[b^{\prime}\right] \Longrightarrow[b]=\left[b^{\prime}\right]$. It follows that the second list consists of the same elements as the first (arranged in a different way). Therefore

$$
[a]\left[b_{1}\right] \cdot[a]\left[b_{2}\right] \cdots[a]\left[b_{m}\right]=\left[b_{1}\right] \cdot\left[b_{2}\right] \cdots\left[b_{m}\right] .
$$

Hence $[a]^{m} X=X$, where $X=\left[b_{1}\right] \cdot\left[b_{2}\right] \cdots\left[b_{m}\right]$. Note that $X \in G_{n}$ since G_{n} is closed under multiplication.
That is, X is invertible. Then $[a]^{m} X X^{-1}=X X^{-1}$
$\Longrightarrow[a]^{m}[1]=[1] \Longrightarrow\left[a^{m}\right]=[1]$. Recall that $m=\phi(n)$.

