MATH 433
Applied Algebra

Lecture 5:
Chinese remainder theorem.
Fermat’s little theorem.
Euler’s theorem.



Congruence classes

Given an integer a, the congruence class of a
modulo n is the set of all integers congruent to a
modulo n: [a], ={a+nk: k € Z}.

The set of all congruence classes modulo n is
denoted 7Z,,.

The arithmetic operations on Z, are defined as
follows. For any integers a and b, we let
[l + [b]n = [a + b],
[a], — [b]» = [a — b]a,
[a], x [b], = [ab],-



Invertible congruence classes

We say that a congruence class [a], is invertible
(or the integer a is invertible modulo n) if there
exists a congruence class [b], such that

[a]n[b], = [1],- [f this is the case, then [b], is called
the inverse of [a], and denoted [a], .

Theorem A nonzero congruence class [a], is
invertible if and only if gcd(a, n) = 1.

The set of all invertible congruence classes in Z, is
denoted G, or Z}. This set is closed under
multiplication.



Chinese Remainder Theorem

Theorem Let n,m > 2 be relatively prime integers and a, b
be any integers. Then the system of congruences

X = a mod n,

X = b mod m,

has a solution. Moreover, this solution is unique modulo nm.

Proof: Since gcd(n,m) =1, we have sn+ tm =1 for some
integers s,t. Let ¢ = bsn+ atm. It is easy to check that ¢
is a solution. Also, any element of [c], is a solution.
Conversely, if x is a solution, then n|(x — ¢) and m|(x — ¢),
which implies that nm|(x — ¢), i.e., x € [¢]am.

Corollary Let ny,no, ..., ne > 2 be pairwise coprime integers
and a, ap,...,ax be any integers. Then the system of
congruences x = a; mod n;, 1 < i < k, has a solution which
is unique modulo nyny ... ng.



Problem. Solve simultaneous congruences

x =3 mod 12,
x = 2 mod 29.

The moduli 12 and 29 are coprime. First we use the
Euclidean algorithm to represent 1 as an integral linear
combination of 12 and 29:

1 0]12 . 1 0]12 . 5 =212

0 1|29 -2 1|5 -2 115

_ 5 =212 - 29 —121|0
—-12 5|1 —12 511)°
Hence (—12)-12+5-29 =1. Let x; =529 = 145,

X = (—12) - 12 = —144. Then

x1 = 1 mod 12, X = 0 mod 12,
x; = 0 mod 29. X = 1 mod 29.

It follows that one solution is x = 3x; + 2x, = 147. The
other solutions form the congruence class of 147 modulo
12-29 = 348.




Problem. Solve simultaneous congruences

x =1 mod 3,

X =2 mod 4,

x = 3 mod 5.
First we solve the first two congruences. Let x; =4, x, = —3.
Then x; =1 mod 3, X, =0 mod 3, x; =0 mod 4,
xo =1 mod 4. It follows that x; + 2x, = —2 is a solution.
The general solution is x = —2 mod 12.

Now it remains to solve the system

x = —2 mod 12,
x =3 mod 5.

We need to represent 1 as an integral linear combination of 12
and 5: 1 =(—2)-12+5-5. Then a particular solution is
x=3:(-2)-124+(—2)-5-5= —122. The general solution
is x = —122 mod 60, which is the same as x = —2 mod 60.



Finite multiplicative order

A congruence class [a], is said to have finite (multiplicative)
order if [a]k = [1], for some positive integer k. The smallest
k with this property is called the order of [a],. We also say
that k is the order of a modulo n.

Theorem A congruence class [a], has finite order if and only
if it is invertible (i.e., a is coprime with n).

Proof: If [a], has finite order k, then [1], = [a]* = [a].[a]%~1,
which implies that [a];! = [a]%~L.

Conversely, suppose that [a], is invertible. Since the set Z,, is
finite, the sequence [a],,[a]?,[a]?,... contains repetitions.
Hence for some integers 0 < r < s we will have

lal, = [al, = lallal,” = [alial,” = (1], = [al5 7"



Examples. o G; = {[1],]2],[3],[4], [5], [6]}

[ = [1],

217 = [4], [2I° =[8] = [1].

BI*=[9]=[2]. [3F =[2B]=[6]. [38]"=[2]* = [4].
BI° = [41(3] = [5]. [3]° = [3][5] = [1]-

[4]* = [16] = [2], [4]° = [4][2] = [1].

[5]* = [25] = [4], [5]° = [4][5] = [-1], [5]" =[-1][5] = [2],
[51° = [2][5] = [3], [5]° = [3][5] = [1].

[6]* = [-1]* = [1].

Thus [1] has order 1, [6] has order 2, [2] and [4] have order 3,

and [3] and [5] have order 6.

e G = {[1], 3], [7], [11]}-

(' = [1], [5]* = [25] = [1], [7] =[-5* = [25] = [1],
L1 = [-1] = [1]

Thus [1] has order 1 while [5], [7], and [11] have order 2.



Fermat’s Little Theorem Let p be a prime number. Then
aP~! = 1 mod p for every integer a not divisible by p.

Proof: Consider two lists of congruence classes modulo p:
[1],[2],....[p — 1] and [a][1],[a][2],.--,[a][p — 1].

The first one is the list of all elements of G,. Since a is not a
multiple of p, it's class [a] is in G, as well. Hence the second
list also consists of elements from G,. Also, all elements in
the second list are distinct as

[a][n] = [allm] = [a]*[a][n] = [a] *[al[m] = [n] = [m].

It follows that the second list consists of the same elements as
the first (arranged in a different way). Therefore

[al(1] - [a][2] - - [allp — 1] = [1] - [2] - - - [P — 1].
Hence [a]P~1X = X, where X =[1]-[2] - [p —1].
Note that X € G, since G, is closed under multiplication.
That is, X is invertible. Then [a]P~!XX™! = XX1
= [Pl =[1] = [ =[1].



Corollary 1 Let p be a prime number. Then a? = a mod p
for every integer a (that is, a? — a is a multiple of p).

Corollary 2 Let a be an integer not divisible by a prime
number p. Then the order of a modulo p is a divisor of p — 1.

Proof: Let k be the order of 2 modulo p. We have

p— 1= kq+ r, where g is the quotient and r is the
remainder of p — 1 by k. By Fermat’s little theorem,
[a]P~ = [1]. Then [a]" = [a]P~*"*9 = [a]P~*([a]*) "7 = [1].
Since 0 < r < k, it follows that r = 0.

Problem. Find the remainder of 12%° under division by 17.

Since 17 is prime and 12 is not a multiple of 17, we have
[12]18 = [1]17. Then [12%0] = [12]%° = [12]316+2

= ([12]*%)3 - [12]? = [12]*> = [-5])*> = [25] = [8]. Hence the
remainder is 8.



Theorem (Euler) Let n> 2 and ¢(n) be the number of
elements in G,. Then a®?(" =1 mod n for every integer a
coprime with n.

Proof: Let [b1],[b2], ..., [bm] be the list of all elements of
G,. Note that m = ¢(n). Consider another list:

[a][b4], [a][b2], - - -, [a][bm]-
Since gcd(a, n) = 1, the congruence class [a], is in G, as well.
Hence the second list also consists of elements from G,. Also,
all elements in the second list are distinct as

[a][b] = [a][b'] = [a] '[allb] = [a] *[a][6] = [b] = [V].
It follows that the second list consists of the same elements as
the first (arranged in a different way). Therefore

[allba] - [a][b2] - - - [a][bm] = [B1] - [bo] - - - [bm].
Hence [a]™X = X, where X = [b] - [b2] - - - [bm]-
Note that X € G, since G, is closed under multiplication.
That is, X is invertible. Then [a]"XX™! = XX1
= [a]"[1] = [1] = [a™] =[1]. Recall that m = ¢(n).



