MATH 433 Applied Algebra Lecture 5: Chinese remainder theorem. Fermat's little theorem. Euler's theorem.

Congruence classes

Given an integer *a*, the **congruence class of** *a* **modulo** *n* is the set of all integers congruent to *a* modulo *n*: $[a]_n = \{a + nk : k \in \mathbb{Z}\}.$

The set of all congruence classes modulo n is denoted \mathbb{Z}_n .

The arithmetic operations on \mathbb{Z}_n are defined as follows. For any integers *a* and *b*, we let

$$[a]_n + [b]_n = [a + b]_n,$$

 $[a]_n - [b]_n = [a - b]_n,$
 $[a]_n \times [b]_n = [ab]_n.$

Invertible congruence classes

We say that a congruence class $[a]_n$ is **invertible** (or the integer *a* is **invertible modulo** *n*) if there exists a congruence class $[b]_n$ such that $[a]_n[b]_n = [1]_n$. If this is the case, then $[b]_n$ is called the **inverse** of $[a]_n$ and denoted $[a]_n^{-1}$.

Theorem A nonzero congruence class $[a]_n$ is invertible if and only if gcd(a, n) = 1.

The set of all invertible congruence classes in \mathbb{Z}_n is denoted G_n or \mathbb{Z}_n^* . This set is closed under multiplication.

Chinese Remainder Theorem

Theorem Let $n, m \ge 2$ be relatively prime integers and a, b be any integers. Then the system of congruences

$$\begin{cases} x \equiv a \mod n, \\ x \equiv b \mod m. \end{cases}$$

has a solution. Moreover, this solution is unique modulo *nm*.

Proof: Since gcd(n, m) = 1, we have sn + tm = 1 for some integers s, t. Let c = bsn + atm. It is easy to check that c is a solution. Also, any element of $[c]_{nm}$ is a solution. Conversely, if x is a solution, then n|(x - c) and m|(x - c), which implies that nm|(x - c), i.e., $x \in [c]_{nm}$.

Corollary Let $n_1, n_2, \ldots, n_k \ge 2$ be pairwise coprime integers and a_1, a_2, \ldots, a_k be any integers. Then the system of congruences $x \equiv a_i \mod n_i$, $1 \le i \le k$, has a solution which is unique modulo $n_1 n_2 \ldots n_k$. Problem. Solve simultaneous congruences

$$x \equiv 3 \mod 12$$

 $x \equiv 2 \mod 12$, $x \equiv 2 \mod 29$.

The moduli 12 and 29 are coprime. First we use the Euclidean algorithm to represent 1 as an integral linear combination of 12 and 29:

$$\begin{pmatrix} 1 & 0 & | & 12 \\ 0 & 1 & | & 29 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & | & 12 \\ -2 & 1 & | & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 5 & -2 & | & 2 \\ -2 & 1 & | & 5 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 5 & -2 & | & 2 \\ -12 & 5 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 29 & -12 & | & 0 \\ -12 & 5 & | & 1 \end{pmatrix}.$$

Hence $(-12) \cdot 12 + 5 \cdot 29 = 1$. Let $x_1 = 5 \cdot 29 = 145$, $x_2 = (-12) \cdot 12 = -144$. Then
$$\begin{cases} x_1 \equiv 1 \mod 12, \\ x_1 \equiv 0 \mod 29. \end{cases} \qquad \begin{cases} x_2 \equiv 0 \mod 12, \\ x_2 \equiv 1 \mod 29. \end{cases}$$

It follows that one solution is $x = 3x_1 + 2x_2 = 147$. The other solutions form the congruence class of 147 modulo $12 \cdot 29 = 348$.

Problem. Solve simultaneous congruences

 $\left\{ \begin{array}{l} x\equiv 1 \mod 3, \\ x\equiv 2 \mod 4, \\ x\equiv 3 \mod 5. \end{array} \right.$

First we solve the first two congruences. Let $x_1 = 4$, $x_2 = -3$. Then $x_1 \equiv 1 \mod 3$, $x_2 \equiv 0 \mod 3$, $x_1 \equiv 0 \mod 4$, $x_2 \equiv 1 \mod 4$. It follows that $x_1 + 2x_2 = -2$ is a solution. The general solution is $x \equiv -2 \mod 12$. Now it remains to solve the system

$$\begin{cases} x \equiv -2 \mod{12}, \\ x \equiv 3 \mod{5}. \end{cases}$$

We need to represent 1 as an integral linear combination of 12 and 5: $1 = (-2) \cdot 12 + 5 \cdot 5$. Then a particular solution is $x = 3 \cdot (-2) \cdot 12 + (-2) \cdot 5 \cdot 5 = -122$. The general solution is $x \equiv -122 \mod 60$, which is the same as $x \equiv -2 \mod 60$.

Finite multiplicative order

A congruence class $[a]_n$ is said to have **finite (multiplicative)** order if $[a]_n^k = [1]_n$ for some positive integer k. The smallest k with this property is called the order of $[a]_n$. We also say that k is the order of a modulo n.

Theorem A congruence class $[a]_n$ has finite order if and only if it is invertible (i.e., *a* is coprime with *n*).

Proof: If $[a]_n$ has finite order k, then $[1]_n = [a]_n^k = [a]_n [a]_n^{k-1}$, which implies that $[a]_n^{-1} = [a]_n^{k-1}$.

Conversely, suppose that $[a]_n$ is invertible. Since the set \mathbb{Z}_n is finite, the sequence $[a]_n, [a]_n^2, [a]_n^3, \ldots$ contains repetitions. Hence for some integers 0 < r < s we will have

$$[a]_{n}^{r} = [a]_{n}^{s} \implies [a]_{n}^{r} [a]_{n}^{-r} = [a]_{n}^{s} [a]_{n}^{-r} \implies [1]_{n} = [a]_{n}^{s-r}.$$

Examples. • $G_7 = \{[1], [2], [3], [4], [5], [6]\}.$ $[1]^1 = [1],$ $[2]^2 = [4], [2]^3 = [8] = [1],$ $[3]^2 = [9] = [2], [3]^3 = [2][3] = [6], [3]^4 = [2]^2 = [4],$ $[3]^5 = [4][3] = [5], [3]^6 = [3][5] = [1].$ $[4]^2 = [16] = [2], \ [4]^3 = [4][2] = [1].$ $[5]^2 = [25] = [4], \ [5]^3 = [4][5] = [-1], \ [5]^4 = [-1][5] = [2],$ $[5]^5 = [2][5] = [3], [5]^6 = [3][5] = [1].$ $[6]^2 = [-1]^2 = [1].$ Thus [1] has order 1, [6] has order 2, [2] and [4] have order 3, and [3] and [5] have order 6.

•
$$G_{12} = \{[1], [5], [7], [11]\}.$$

 $[1]^1 = [1], [5]^2 = [25] = [1], [7]^2 = [-5]^2 = [25] = [1],$
 $[11]^2 = [-1]^2 = [1].$
Thus [1] has order 1 while [5], [7], and [11] have order 2.

Fermat's Little Theorem Let p be a prime number. Then $a^{p-1} \equiv 1 \mod p$ for every integer a not divisible by p.

Proof: Consider two lists of congruence classes modulo p: [1], [2], ..., [p - 1] and [a][1], [a][2], ..., [a][p - 1].

The first one is the list of all elements of G_p . Since *a* is not a multiple of *p*, it's class [*a*] is in G_p as well. Hence the second list also consists of elements from G_p . Also, all elements in the second list are distinct as

 $[a][n] = [a][m] \implies [a]^{-1}[a][n] = [a]^{-1}[a][m] \implies [n] = [m].$ It follows that the second list consists of the same elements as the first (arranged in a different way). Therefore

$$[a][1] \cdot [a][2] \cdots [a][p-1] = [1] \cdot [2] \cdots [p-1].$$

Hence $[a]^{p-1}X = X$, where $X = [1] \cdot [2] \cdots [p-1]$. Note that $X \in G_p$ since G_p is closed under multiplication. That is, X is invertible. Then $[a]^{p-1}XX^{-1} = XX^{-1}$ $\implies [a]^{p-1}[1] = [1] \implies [a^{p-1}] = [1]$. **Corollary 1** Let p be a prime number. Then $a^p \equiv a \mod p$ for every integer a (that is, $a^p - a$ is a multiple of p).

Corollary 2 Let *a* be an integer not divisible by a prime number *p*. Then the order of *a* modulo *p* is a divisor of p-1.

Proof: Let k be the order of a modulo p. We have p-1 = kq + r, where q is the quotient and r is the remainder of p-1 by k. By Fermat's little theorem, $[a]^{p-1} = [1]$. Then $[a]^r = [a]^{p-1-kq} = [a]^{p-1}([a]^k)^{-q} = [1]$. Since $0 \le r < k$, it follows that r = 0.

Problem. Find the remainder of 12^{50} under division by 17. Since 17 is prime and 12 is not a multiple of 17, we have $[12]_{17}^{16} = [1]_{17}$. Then $[12^{50}] = [12]^{50} = [12]^{3 \cdot 16 + 2} = ([12]^{16})^3 \cdot [12]^2 = [12]^2 = [-5]^2 = [25] = [8]$. Hence the remainder is 8. **Theorem (Euler)** Let $n \ge 2$ and $\phi(n)$ be the number of elements in G_n . Then $a^{\phi(n)} \equiv 1 \mod n$ for every integer *a* coprime with *n*.

Proof: Let $[b_1], [b_2], \ldots, [b_m]$ be the list of all elements of G_n . Note that $m = \phi(n)$. Consider another list:

 $[a][b_1], [a][b_2], \ldots, [a][b_m].$

Since gcd(a, n) = 1, the congruence class $[a]_n$ is in G_n as well. Hence the second list also consists of elements from G_n . Also, all elements in the second list are distinct as

 $[a][b] = [a][b'] \implies [a]^{-1}[a][b] = [a]^{-1}[a][b'] \implies [b] = [b'].$ It follows that the second list consists of the same elements as the first (arranged in a different way). Therefore

 $[a][b_1] \cdot [a][b_2] \cdots [a][b_m] = [b_1] \cdot [b_2] \cdots [b_m].$ Hence $[a]^m X = X$, where $X = [b_1] \cdot [b_2] \cdots [b_m].$ Note that $X \in G_n$ since G_n is closed under multiplication. That is, X is invertible. Then $[a]^m X X^{-1} = X X^{-1}$ $\implies [a]^m [1] = [1] \implies [a^m] = [1].$ Recall that $m = \phi(n).$