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Lecture 5:
Chinese remainder theorem.

Fermat’s little theorem.
Euler’s theorem.



Congruence classes

Given an integer a, the congruence class of a

modulo n is the set of all integers congruent to a

modulo n: [a]n = {a + nk : k ∈ Z}.

The set of all congruence classes modulo n is
denoted Zn.

The arithmetic operations on Zn are defined as
follows. For any integers a and b, we let

[a]n + [b]n = [a + b]n,

[a]n − [b]n = [a − b]n,

[a]n × [b]n = [ab]n.



Invertible congruence classes

We say that a congruence class [a]n is invertible
(or the integer a is invertible modulo n) if there
exists a congruence class [b]n such that
[a]n[b]n = [1]n. If this is the case, then [b]n is called
the inverse of [a]n and denoted [a]−1

n
.

Theorem A nonzero congruence class [a]n is
invertible if and only if gcd(a, n) = 1.

The set of all invertible congruence classes in Zn is
denoted Gn or Z

∗
n
. This set is closed under

multiplication.



Chinese Remainder Theorem

Theorem Let n, m ≥ 2 be relatively prime integers and a, b

be any integers. Then the system of congruences
{

x ≡ a mod n,

x ≡ b mod m,

has a solution. Moreover, this solution is unique modulo nm.

Proof: Since gcd(n, m) = 1, we have sn + tm = 1 for some
integers s, t. Let c = bsn + atm. It is easy to check that c

is a solution. Also, any element of [c]nm is a solution.
Conversely, if x is a solution, then n|(x − c) and m|(x − c),
which implies that nm|(x − c), i.e., x ∈ [c]nm.

Corollary Let n1, n2, . . . , nk ≥ 2 be pairwise coprime integers
and a1, a2, . . . , ak be any integers. Then the system of
congruences x ≡ ai mod ni , 1 ≤ i ≤ k , has a solution which
is unique modulo n1n2 . . . nk .



Problem. Solve simultaneous congruences
{

x ≡ 3 mod 12,
x ≡ 2 mod 29.

The moduli 12 and 29 are coprime. First we use the
Euclidean algorithm to represent 1 as an integral linear
combination of 12 and 29:
(

1 0 12
0 1 29

)

→

(

1 0 12
−2 1 5

)

→

(

5 −2 2
−2 1 5

)

→

(

5 −2 2
−12 5 1

)

→

(

29 −12 0
−12 5 1

)

.

Hence (−12) · 12 + 5 · 29 = 1. Let x1 = 5 · 29 = 145,
x2 = (−12) · 12 = −144. Then

{

x1 ≡ 1 mod 12,
x1 ≡ 0 mod 29.

{

x2 ≡ 0 mod 12,
x2 ≡ 1 mod 29.

It follows that one solution is x = 3x1 + 2x2 = 147. The
other solutions form the congruence class of 147 modulo
12 · 29 = 348.



Problem. Solve simultaneous congruences






x ≡ 1 mod 3,
x ≡ 2 mod 4,
x ≡ 3 mod 5.

First we solve the first two congruences. Let x1 = 4, x2 = −3.
Then x1 ≡ 1 mod 3, x2 ≡ 0 mod 3, x1 ≡ 0 mod 4,
x2 ≡ 1 mod 4. It follows that x1 + 2x2 = −2 is a solution.
The general solution is x ≡ −2 mod 12.

Now it remains to solve the system
{

x ≡ −2 mod 12,
x ≡ 3 mod 5.

We need to represent 1 as an integral linear combination of 12
and 5: 1 = (−2) · 12 + 5 · 5. Then a particular solution is
x = 3 · (−2) · 12 + (−2) · 5 · 5 = −122. The general solution
is x ≡ −122 mod 60, which is the same as x ≡ −2 mod 60.



Finite multiplicative order

A congruence class [a]n is said to have finite (multiplicative)
order if [a]kn = [1]n for some positive integer k . The smallest
k with this property is called the order of [a]n. We also say
that k is the order of a modulo n.

Theorem A congruence class [a]n has finite order if and only
if it is invertible (i.e., a is coprime with n).

Proof: If [a]n has finite order k , then [1]n = [a]kn = [a]n[a]
k−1
n ,

which implies that [a]−1
n = [a]k−1

n .

Conversely, suppose that [a]n is invertible. Since the set Zn is
finite, the sequence [a]n, [a]

2
n, [a]

3
n, . . . contains repetitions.

Hence for some integers 0 < r < s we will have

[a]rn = [a]sn =⇒ [a]rn[a]
−r
n = [a]sn[a]

−r
n =⇒ [1]n = [a]s−r

n .



Examples. • G7 = {[1], [2], [3], [4], [5], [6]}.

[1]1 = [1],

[2]2 = [4], [2]3 = [8] = [1],

[3]2 = [9] = [2], [3]3 = [2][3] = [6], [3]4 = [2]2 = [4],
[3]5 = [4][3] = [5], [3]6 = [3][5] = [1].

[4]2 = [16] = [2], [4]3 = [4][2] = [1].

[5]2 = [25] = [4], [5]3 = [4][5] = [−1], [5]4 = [−1][5] = [2],
[5]5 = [2][5] = [3], [5]6 = [3][5] = [1].

[6]2 = [−1]2 = [1].

Thus [1] has order 1, [6] has order 2, [2] and [4] have order 3,
and [3] and [5] have order 6.

• G12 = {[1], [5], [7], [11]}.

[1]1 = [1], [5]2 = [25] = [1], [7]2 = [−5]2 = [25] = [1],

[11]2 = [−1]2 = [1].

Thus [1] has order 1 while [5], [7], and [11] have order 2.



Fermat’s Little Theorem Let p be a prime number. Then
ap−1 ≡ 1 mod p for every integer a not divisible by p.

Proof: Consider two lists of congruence classes modulo p:

[1], [2], . . . , [p − 1] and [a][1], [a][2], . . . , [a][p − 1].

The first one is the list of all elements of Gp. Since a is not a
multiple of p, it’s class [a] is in Gp as well. Hence the second
list also consists of elements from Gp. Also, all elements in
the second list are distinct as

[a][n] = [a][m] =⇒ [a]−1[a][n] = [a]−1[a][m] =⇒ [n] = [m].

It follows that the second list consists of the same elements as
the first (arranged in a different way). Therefore

[a][1] · [a][2] · · · [a][p − 1] = [1] · [2] · · · [p − 1].

Hence [a]p−1X = X , where X = [1] · [2] · · · [p − 1].
Note that X ∈ Gp since Gp is closed under multiplication.
That is, X is invertible. Then [a]p−1XX−1 = XX−1

=⇒ [a]p−1[1] = [1] =⇒ [ap−1] = [1].



Corollary 1 Let p be a prime number. Then ap ≡ a mod p

for every integer a (that is, ap − a is a multiple of p).

Corollary 2 Let a be an integer not divisible by a prime
number p. Then the order of a modulo p is a divisor of p − 1.

Proof: Let k be the order of a modulo p. We have
p − 1 = kq + r , where q is the quotient and r is the
remainder of p − 1 by k . By Fermat’s little theorem,
[a]p−1 = [1]. Then [a]r = [a]p−1−kq = [a]p−1([a]k)−q = [1].
Since 0 ≤ r < k , it follows that r = 0.

Problem. Find the remainder of 1250 under division by 17.

Since 17 is prime and 12 is not a multiple of 17, we have
[12]1617 = [1]17. Then [1250] = [12]50 = [12]3·16+2 =

= ([12]16)3 · [12]2 = [12]2 = [−5]2 = [25] = [8]. Hence the
remainder is 8.



Theorem (Euler) Let n ≥ 2 and φ(n) be the number of
elements in Gn. Then aφ(n) ≡ 1 mod n for every integer a

coprime with n.

Proof: Let [b1], [b2], . . . , [bm] be the list of all elements of
Gn. Note that m = φ(n). Consider another list:

[a][b1], [a][b2], . . . , [a][bm].

Since gcd(a, n) = 1, the congruence class [a]n is in Gn as well.
Hence the second list also consists of elements from Gn. Also,
all elements in the second list are distinct as

[a][b] = [a][b′] =⇒ [a]−1[a][b] = [a]−1[a][b′] =⇒ [b] = [b′].

It follows that the second list consists of the same elements as
the first (arranged in a different way). Therefore

[a][b1] · [a][b2] · · · [a][bm] = [b1] · [b2] · · · [bm].

Hence [a]mX = X , where X = [b1] · [b2] · · · [bm].
Note that X ∈ Gn since Gn is closed under multiplication.
That is, X is invertible. Then [a]mXX−1 = XX−1

=⇒ [a]m[1] = [1] =⇒ [am] = [1]. Recall that m = φ(n).


