Applied Algebra

Lecture 6:
Euler's totient function.

MATH 433

Public key systems.

Finite multiplicative order

 \mathbb{Z}_n : the set of all congruence classes modulo n. G_n : the set of all invertible congruence classes modulo n.

Theorem A nonzero congruence class $[a]_n$ is invertible if and only if gcd(a, n) = 1.

A congruence class $[a]_n$ has **finite order** if $[a]_n^k = [1]_n$ for some integer $k \ge 1$. The smallest k with this property is called the **order of** $[a]_n$. We also say that k is the **order of** a **modulo** a.

Theorem A congruence class $[a]_n$ has finite order if and only if it is invertible.

Proposition Let k be the order of an integer a modulo n. Then $a^s \equiv 1 \mod n$ if and only if s is a multiple of k.

Proof: If s = kt, where $t \in \mathbb{Z}$, then

$$[a]_n^s = ([a]_n^k)^t = [1]_n^t = [1]_n.$$

Conversely, let $[a]_n^s = [1]_n$. We have s = kq + r, where q is the quotient and r is the remainder of s by k. Then

$$[a]^r = [a]^{s-kq} = [a]^s([a]^k)^{-q} = [1].$$

Since $0 \le r < k$, it follows that r = 0.

Fermat's Little Theorem Let p be a prime number. Then $a^{p-1} \equiv 1 \mod p$ for every integer a not divisible by p.

Euler's Theorem Let $n \ge 2$ and $\phi(n)$ be the number of elements in G_n . Then $a^{\phi(n)} \equiv 1 \mod n$ for every integer a coprime with n.

Corollary Let a be an integer coprime with an integer $n \ge 2$. Then the order of a modulo n is a divisor of $\phi(n)$.

Euler's totient function

The number of elements in G_n , the set of invertible congruence classes modulo n, is denoted $\phi(n)$. In other words, $\phi(n)$ counts how many of the numbers $1, 2, \ldots, n$ are coprime with n.

 $\phi(n)$ is called **Euler's** ϕ -function or **Euler's totient function**.

Proposition 1 If p is prime, then $\phi(p^s) = p^s - p^{s-1}$.

Proposition 2 If gcd(m, n) = 1, then $\phi(mn) = \phi(m)\phi(n)$.

Theorem Let $n = p_1^{s_1} p_2^{s_2} \dots p_k^{s_k}$, where p_1, p_2, \dots, p_k are distinct primes and s_1, \dots, s_k are positive integers. Then

$$\phi(n) = p_1^{s_1-1}(p_1-1)p_2^{s_2-1}(p_2-1)\dots p_k^{s_k-1}(p_k-1).$$

Sketch of the proof: The proof is by induction on k. The basis of induction is Proposition 1. The induction step relies on Proposition 2.

Proposition If gcd(m, n) = 1, then $\phi(mn) = \phi(m)\phi(n)$.

Proof: Let $\mathbb{Z}_m \times \mathbb{Z}_n$ denote the set of all pairs (X, Y) such that $X \in \mathbb{Z}_m$ and $Y \in \mathbb{Z}_n$. We define a function $f: \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$ by the formula $f([a]_{mn}) = ([a]_n, [a]_m)$.

Since m and n divide mn, this function is well defined (does not depend on the choice of the representative a). Since $\gcd(m,n)=1$, the Chinese remainder theorem implies that this function establishes a one-to-one correspondence between the sets \mathbb{Z}_{mn} and $\mathbb{Z}_m \times \mathbb{Z}_n$.

Furthermore, an integer a is coprime with mn if and only if it is coprime with m and with n. Therefore the function f also establishes a one-to-one correspondence between G_{mn} and $G_m \times G_n$, the latter being the set of pairs (X,Y) such that $X \in G_m$ and $Y \in G_n$. It follows that the sets G_{mn} and $G_m \times G_n$ consist of the same number of elements. Thus $\phi(mn) = \phi(m)\phi(n)$.

Examples.
$$\phi(11) = 10$$
, $\phi(25) = \phi(5^2) = 5 \cdot 4 = 20$, $\phi(27) = \phi(3^3) = 3^2 \cdot 2 = 18$,

$$\phi(100) = \phi(2^2 \cdot 5^2) = \phi(2^2)\phi(5^2) = 2 \cdot 20 = 40,$$

$$\phi(1001) = \phi(7 \cdot 11 \cdot 13) = \phi(7)\phi(11)\phi(13)$$

$$= 6 \cdot 10 \cdot 12 = 720.$$

Problem. Determine the last two digits of 7^{404} . The last two digits are the remainder under division

The last two digits are the remainder under division by 100. Since $\phi(100) = 40$, we have

$$7^{40} \equiv 1 \mod 100.$$
 Then $[7^{404}] = [7]^{404} = [7]^{40 \cdot 10 + 4} = ([7]^{40})^{10} [7]^4$ = $[7]^4 = [343][7] = [43][7] = [301] = [1].$ Hence the last two digits are 01.

Public key encryption

Suppose that Alice wants to obtain some confidential information from Bob, but they can only communicate via a public channel (meaning all that is sent may become available to third parties). How to organize secure transfer of data in these circumstances?

The **public key encryption** is a solution to this problem.

Public key encryption

The first step is **coding**. Bob digitizes the message and breaks it into blocks b_1, b_2, \ldots, b_k so that each block can be encoded by an element of a set $X = \{1, \ldots, K\}$, where K is large. This results in a **plaintext**. Coding and decoding are standard procedures known to public.

Next step is **encryption**. Alice sends a **public key**, which is an invertible function $f: X \to Y$, where Y is an equally large set. Bob uses this function to produce an encrypted message (**ciphertext**): $f(b_1), f(b_2), \ldots, f(b_k)$. The ciphertext is then sent to Alice.

The remaining steps are **decryption** and **decoding**. To decrypt the encrypted message (and restore the plaintext), Alice applies the inverse function f^{-1} to each block. Finally, the plaintext is decoded to obtain the original message.

Trapdoor function

For a successful encryption, the function f has to be the so-called **trapdoor function**, which means that f is easy to compute while f^{-1} is hard to compute unless one knows special information ("trapdoor").

The usual approach is to have a family of fuctions $f_{\alpha}: X_{\alpha} \rightarrow X_{\alpha}$ (where $X \subset X_{\alpha}$) depending on a parameter α (or several parameters). For any function in the family, the inverse also belongs to the family. The parameter α is the trapdoor.

An additional step in exchange of information is **key generation**. Alice generates a pair of **keys**, i.e., parameter values, α and β such that the function f_{β} is the inverse of f_{α} . α is the **public key**, it is communicated to Bob (and anyone else who wishes to send encrypted information to Alice). β is the **private key**, only Alice knows it.

The encryption system is efficient if it is virtually impossible to find β when one only knows α .

RSA system

The **RSA** (**Rivest-Shamir-Adleman**) system is a public key system based on the modular arithmetic.

 $X = \{1, 2, ..., K\}$, where K is a large number (say, 2^{128}).

The **key** is a pair of integers (n, α) , **base** and **exponent**. The domain of the function $f_{n,\alpha}$ is G_n , the set of invertible congruence classes modulo n, regarded as a subset of $\{0, 1, 2, \ldots, n-1\}$. We need to pick n so that the numbers $1, 2, \ldots, K$ are all coprime with n.

The function is given by $f_{n,\alpha}(a) = a^{\alpha} \mod n$.

Key generation: First we pick two distinct primes p and q greater than K and let n=pq. Secondly, we pick an integer α coprime with $\phi(n)=(p-1)(q-1)$. Thirdly, we compute β , the inverse of α modulo $\phi(n)$.

Now the public key is (n, α) while the private key is (n, β) .

By construction, $\alpha\beta=1+\phi(n)k$, $k\in\mathbb{Z}$. Then

$$f_{n,eta}(f_{n,lpha}(a))=[a]_n^{lphaeta}=[a]_n([a]_n^{\phi(n)})^k,$$

which equals $[a]_n$ by Euler's theorem. Thus $f_{n,\beta} = f_{n,\alpha}^{-1}$. Efficiency of the RSA system is based on impossibility of

Efficiency of the RSA system is based on impossibility of efficient prime factorisation (at present time).

Example. Let us take p = 5, q = 23 so that the base is n = pq = 115. Then $\phi(n) = (p - 1)(q - 1) = 4 \cdot 22 = 88$. Exponent for the public key: $\alpha = 29$. It is easy to observe that -3 is the inverse of 29 modulo 88:

$$(-3) \cdot 29 = -87 \equiv 1 \mod 88.$$

However the exponent is to be positive, so we take $\beta = 85$ ($\equiv -3 \mod 88$).

Public key: (115, 29), private key: (115, 85).

Example of plaintext: 6/8 (two blocks).

Ciphertext: 26 ($\equiv 6^{29} \mod 115$), 58 ($\equiv 8^{29} \mod 115$).