Lecture 8:

MATH 433

Applied Algebra

Review for Exam 1.

Topics for Exam 1

- Greatest common divisor, Euclidean algorithm
- Primes, factorisation, Unique Factorisation Theorem
- Congruence classes, modular arithmetic
- Inverse of a congruence class
- Linear congruences
- Chinese Remainder Theorem
- Order of a congruence class
- Fermat's litle theorem, Euler's theorem
- Euler's totient function
- Public key encryption, the RSA system
- Mathematical induction
- Relations

Sample problems

- **Problem 1.** Find gcd(1106, 350).
- **Problem 2.** Find an integer solution of the equation 45x + 115y = 10.
- **Problem 3.** Prove by induction that

$$\frac{1}{4} + \frac{1}{16} + \dots + \frac{1}{4^n} = \frac{1}{3} \left(1 - \frac{1}{4^n} \right)$$

for every positive integer n.

- **Problem 4.** When the number $14^7 \cdot 25^{30} \cdot 40^{12}$ is written out, how many zeroes are there at the right-hand end?
- **Problem 5.** Find a multiplicative inverse of 29 modulo 41.
- **Problem 6.** Which congruence classes modulo 8 are invertible?
- **Problem 7.** Find an integer x such that $21x \equiv 5 \mod 31$.

Sample problems

- **Problem 8.** Solve the system $\begin{cases} y \equiv 4 \mod 7, \\ y \equiv 5 \mod 11. \end{cases}$
- **Problem 9.** Find the multiplicative order of 7 modulo 36.
- **Problem 10.** Determine the last two digits of 7^{303} .
- **Problem 11.** How many integers from 1 to 120 are relatively prime with 120?
- **Problem 12.** You receive a message that was encrypted using the RSA system with public key (33,7), where 33 is the base and 7 is the exponent. The encrypted message, in two blocks, is 5/31. Find the private key and decrypt the message.
- **Problem 13.** Let R be the relation defined on the set of positive integers by xRy if and only if $gcd(x,y) \neq 1$ ("is not coprime with"). Is this relation reflexive? Symmetric? Transitive?

Problem 1. Find gcd(1106, 350).

To find the greatest common divisor of 1106 and 350, we apply the Euclidean algorithm to these numbers.

First we divide 1106 by 350: $1106 = 350 \cdot 3 + 56$, next we divide 350 by 56: $350 = 56 \cdot 6 + 14$, next we divide 56 by 14: $56 = 14 \cdot 4$.

It follows that gcd(1106, 350) = gcd(350, 56) = gcd(56, 14) = 14.

Alternatively, we could use the Euclidean algorithm in matrix form:

$$\begin{pmatrix}
1 & 0 & | & 1106 \\
0 & 1 & | & 350
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & -3 & | & 56 \\
0 & 1 & | & 350
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & -3 & | & 56 \\
-6 & 19 & | & 14
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
25 & -79 & | & 0 \\
-6 & 19 & | & 14
\end{pmatrix}.$$

Now gcd(1106, 350) is the nonzero entry in the rightmost column of the last matrix, which is 14.

Problem 2. Find an integer solution of the equation 45x + 115y = 10.

First we use the Euclidean algorithm to find $\gcd(45,115)$ and represent it as an integral linear combination of 45 and 115:

$$\begin{pmatrix} 1 & 0 & | & 45 \\ 0 & 1 & | & 115 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & | & 45 \\ -2 & 1 & | & 25 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & -1 & | & 20 \\ -2 & 1 & | & 25 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 3 & -1 & 20 \\ -5 & 2 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 23 & -9 & 0 \\ -5 & 2 & 5 \end{pmatrix}.$$

It follows that gcd(45, 115) = 5. Also, from the second row of the last matrix we read off that $(-5) \cdot 45 + 2 \cdot 115 = 5$.

Multiplying both sides by 2, we get that x = -10, y = 4 is a solution.

Problem 3. Prove by induction that

$$\frac{1}{4} + \frac{1}{16} + \dots + \frac{1}{4^n} = \frac{1}{3} \left(1 - \frac{1}{4^n} \right)$$

for every positive integer n.

The proof is by induction on n. First consider the case n=1. In this case the formula reduces to $\frac{1}{4}=\frac{1}{3}\left(1-\frac{1}{4}\right)$, which is a true equality.

Now assume that the formula holds for n = k, that is,

$$\frac{1}{4} + \frac{1}{16} + \dots + \frac{1}{4^k} = \frac{1}{3} \left(1 - \frac{1}{4^k} \right).$$

Then
$$\frac{1}{4} + \frac{1}{16} + \dots + \frac{1}{4^k} + \frac{1}{4^{k+1}} = \frac{1}{3} \left(1 - \frac{1}{4^k} \right) + \frac{1}{4^{k+1}}$$

= $\frac{1}{2} - \frac{1}{2} \cdot \frac{1}{4^k} + \frac{1}{4} \cdot \frac{1}{4^k} = \frac{1}{2} - \frac{1}{12} \cdot \frac{1}{4^k} = \frac{1}{2} \left(1 - \frac{1}{4^{k+1}} \right)$,

which means that the formula holds for n = k + 1 as well.

By induction, the formula holds for every positive integer n.

Problem 4. When the number $14^7 \cdot 25^{30} \cdot 40^{12}$ is written out, how many zeroes are there at the right-hand end?

The number of consecutive zeroes at the right-hand end is the exponent of the largest power of 10 that divides our number.

The prime factorisation of the given number is $14^7 \cdot 25^{30} \cdot 40^{12} = (2 \cdot 7)^7 \cdot (5^2)^{30} \cdot (2^3 \cdot 5)^{12} = 2^{73} \cdot 5^{72} \cdot 7^7$.

For any integer
$$n > 0$$
, the prime factorisation of 10^n is $2^n E^n$

For any integer n > 0 the prime factorisation of 10^n is $2^n \cdot 5^n$.

As follows from the Unique Factorisation Theorem, a positive integer A divides another positive integer B if and only if the prime factorisation of A is part of the prime factorisation of B.

Hence 10^n divides the given number if $n \le 73$ and $n \le 72$. The largest number with this property is 72. Thus there are 72 zeroes at the right-hand end.

Problem 5. Find a multiplicative inverse of 29 modulo 41.

To find the inverse, we need to represent 1 as an integral linear combination of 29 and 41. Let us apply the Euclidean algorithm (in matrix form) to 29 and 41:

$$\begin{pmatrix} 1 & 0 & 29 \\ 0 & 1 & 41 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 29 \\ -1 & 1 & 12 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & -2 & 5 \\ -1 & 1 & 12 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 3 & -2 & 5 \\ -7 & 5 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 17 & -12 & 1 \\ -7 & 5 & 2 \end{pmatrix}.$$

From the first row of the last matrix we read off that $17 \cdot 29 - 12 \cdot 41 = 1$. Hence $17 \cdot 29 \equiv 1 \mod 41$. It follows that $[17]_{41}[29]_{41} = [1]_{41}$, which means that

[29]₄₁⁻¹ = [17]₄₁. Thus 17 is the inverse of 29 modulo 41.

Problem 6. Which congruence classes modulo 8 are invertible?

A congruence class $[a]_n$ is invertible if and only if a is coprime with n.

There are 8 congruence classes modulo 8:

$$[0], [1], [2], [3], [4], [5], [6], [7].$$

The congruence classes of even numbers are not invertible. The classes of odd numbers are invertible.

$$[1]^{-1} = 1$$
, $[3]^{-1} = [3]$, $[5]^{-1} = [5]$, $[7]^{-1} = [7]$.

Every invertible class is its own inverse.

Problem 7. Find an integer x such that $21x \equiv 5 \mod 31$.

To solve this linear congruence, we need to find the inverse of 21 modulo 31. For this, we need to represent 1 as an integral linear combination of 21 and 31. This can be done either by inspection or by the matrix method:

$$\begin{pmatrix} 1 & 0 & 21 \\ 0 & 1 & 31 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 21 \\ -1 & 1 & 10 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & -2 & 1 \\ -1 & 1 & 10 \end{pmatrix}.$$

From the first row we read off that $3 \cdot 21 - 2 \cdot 31 = 1$, which implies that 3 is the inverse of 21 modulo 31.

Thus
$$21x \equiv 5 \mod 31 \iff x \equiv 3 \cdot 5 \mod 31$$

 $\iff x \equiv 15 \mod 31.$

In alternative notation (with congruence classes modulo 31), $[21][x] = [5] \iff [x] = [21]^{-1}[5] = [3][5] = [15].$

Problem 8. Solve the system $\begin{cases} y \equiv 4 \mod 7, \\ y \equiv 5 \mod 11. \end{cases}$

The moduli 7 and 11 are coprime. First we use the Euclidean algorithm to represent 1 as an integral linear combination of 7 and 11:

$$\begin{pmatrix}
1 & 0 & 7 \\
0 & 1 & 11
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 7 \\
-1 & 1 & 4
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & -1 & 3 \\
-1 & 1 & 4
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
2 & -1 & 3 \\
-3 & 2 & 1
\end{pmatrix}.$$

Hence $(-3) \cdot 7 + 2 \cdot 11 = 1$. Then one of the solutions is $y = 5(-3) \cdot 7 + 4 \cdot 2 \cdot 11 = -17$.

The general solution is $y \equiv -17 \mod 77$.

Problem 8. Solve the system $\begin{cases} y \equiv 4 \mod 7, \\ y \equiv 5 \mod 11. \end{cases}$

Alternative solution: From the second congruence we find that y=5+11k, where k is an integer. Substituting this into the first congruence, we obtain

$$5 + 11k \equiv 4 \mod 7 \iff 11k \equiv -1 \mod 7$$

 $\iff 4k \equiv -1 \mod 7.$

Multiplying both sides of the last congruence by 2 (which is the inverse of 4 modulo 7), we get

$$8k \equiv -2 \mod 7 \iff k \equiv -2 \mod 7.$$

Thus k = -2 + 7s, where s is an integer. Then y = 5 + 11k = 5 + 11(-2 + 7s) = -17 + 77s.

Problem 9. Find the multiplicative order of 7 modulo 36.

The multiplicative order of 7 modulo 36 is the smallest positive integer n such that $7^n \equiv 1 \mod 36$ (it is well defined since 7 is coprime with 36). As follows from Euler's theorem, the order divides

$$\phi(36) = \phi(2^2 \cdot 3^2) = \phi(2^2)\phi(3^2) = (2^2 - 2)(3^2 - 3) = 12.$$

To find the order, we compute consecutive powers of the congruence class of 7 modulo 36:

$$[7]^2 = [49] = [13],$$

 $[7]^3 = [7]^2[7] = [13][7] = [91] = [19],$
 $[7]^4 = ([7]^2)^2 = [13]^2 = [169] = [25] = [-11],$
since 5 does not divide 12, there is no need to compute $[7]^5,$
 $[7]^6 = [7]^4[7]^2 = [-11][13] = [-143] = [1].$

Thus the order of 7 modulo 36 is 6.

Remark. In the case $[7]^6 \neq [1]$, we would conclude that the order is 12.

Problem 10. Determine the last two digits of 7^{303} .

The last two digits are the remainder under division by 100. Since $\phi(100) = \phi(2^2 \cdot 5^2) = (2^2 - 2)(5^2 - 5) = 40$, we have $7^{40} \equiv 1 \mod 100$ due to Euler's theorem. Then $[7^{303}] = [7]^{303} = [7]^{40 \cdot 7 + 23} = ([7]^{40})^7 [7]^{23} = [7]^{23}.$

To simplify computation, we use the Chinese Remainder Theorem, which says that a congruence class $[a]_{100}$ is uniquely determined by the congruence classes $[a]_4$ and $[a]_{25}$.

Since $\phi(4) = \phi(2^2) = 2$ and $\phi(25) = \phi(5^2) = 20$, it follows from Euler's theorem that $7^2 \equiv 1 \mod 4$ and $7^{20} \equiv 1 \mod 25$. Then $[7]_4^{23} = [7]_4 = [3]_4$ and $[7]_{25}^{23} = [7]_{25}^3 = [49]_{25}[7]_{25}$

 $= [-1]_{25}[7]_{25} = [-7]_{25} = [18]_{25}.$

Since $7^{303}\equiv 7^{23}\equiv 18 \mod 25$, the remainder of 7^{303} under division by 100 is among the four numbers 18, 43=18+25, $68=18+25\cdot 2$, and $93=18+25\cdot 3$. We pick the one that has remainder 3 under division by 4. That's 43.

Problem 11. How many integers from 1 to 120 are relatively prime with 120?

The number of integers from 1 to n that are relatively prime with n is given by Euler's totient function $\phi(n)$.

To find $\phi(120)$, we expand 120 into a product of primes:

$$120 = 10 \cdot 12 = 2 \cdot 5 \cdot 4 \cdot 3 = 2^3 \cdot 3 \cdot 5.$$

Then

$$\phi(120) = \phi(2^3) \phi(3) \phi(5) = (2^3 - 2^2)(3 - 1)(5 - 1) = 32.$$

Problem 12. You receive a message that was encrypted using the RSA system with public key (33,7), where 33 is the base and 7 is the exponent. The encrypted message, in two blocks, is 5/31. Find the private key and decrypt the message.

First we find that $\phi(33) = \phi(3)\phi(11) = (3-1)(11-1) = 20$.

The private key is $(33, \beta)$, where the exponent β is the inverse of 7 (the exponent from the public key) modulo $\phi(33) = 20$. It is easy to find by inspection that $\beta = 3$ (as $3 \cdot 7 = 21 \equiv 1 \mod 20$). Clearly, this could also be done by applying the Euclidean algorithm to 7 and 20.

Now that we know the private key, the decrypted message is b_1/b_2 , where $b_1 \equiv 5^3 \mod 33$, $b_2 \equiv 31^3 \mod 33$, and $0 \le b_1, b_2 < 33$. We find that $[b_1]_{33} = [5]_{33}^3 = [5^3]_{33} = [125]_{33} = [26]_{33}$, $[b_2]_{33} = [31]_{33}^3 = [-2]_{33}^3 = [(-2)^3]_{33} = [-8]_{33} = [25]_{33}$.

Thus the decrypted message is 26/25.

Problem 13. Let R be the relation defined on the set \mathbb{P} of positive integers by xRy if and only if $\gcd(x,y) \neq 1$ ("is not coprime with"). Is this relation reflexive? Symmetric? Transitive?

The relation R is not reflexive since 1 is not related to itself (actually, this is the only positive integer not related to itself by R).

The relation is symmetric since gcd(x, y) = gcd(y, x) for all $x, y \in \mathbb{P}$.

The relation is not transitive as the following counterexample shows: 2R6 and 6R3, but 2 is not related to 3 by R.