MATH 433

Applied Algebra

Lecture 10:

Permutations.

Permutations

Let X be a finite set. A permutation of X is a bijection from X to itself.

Let $f: X \rightarrow X$ be a function. Given $x \in X$, the element $y=f(x)$ is called the image of x under the function f. Also, x is called preimage of y under f.
The function $f: X \rightarrow X$ is injective (or one-to-one) if any $y \in X$ has at most one preimage. The function f is surjective (or onto) if any $y \in X$ has at least one preimage. The function f is bijective if any $y \in X$ has exactly one preimage.
The inverse function f^{-1} is defined by the rule

$$
x=f^{-1}(y) \Longleftrightarrow y=f(x)
$$

The inverse f^{-1} exists if and only if f is a bijection. If f^{-1} exists then it is also a bijection.

Theorem If X is a finite set, then the following conditions on a function $f: X \rightarrow X$ are equivalent:

- f is injective,
- f is surjective,
- f is bijective.

Examples. - The identity function $\mathrm{id}_{X}: X \rightarrow X, \operatorname{id}_{X}(x)=x$ for every $x \in X$.

- Let G_{n} be the set of invertible congruence classes modulo n, $[a] \in G_{n}$, and define a function $f: G_{n} \rightarrow G_{n}$ by $f([x])=[a][x]$. Then f is a permutation on G_{n} (which is the key fact in the proof of Euler's theorem).

Symmetric group

Permutations are traditionally denoted by Greek letters (π, σ, τ, ρ, \ldots).
Two-row notation. $\pi=\left(\begin{array}{cccc}a & b & c & \ldots \\ \pi(a) & \pi(b) & \pi(c) & \cdots\end{array}\right)$,
where a, b, c, \ldots is a list of all elements in the domain of π. Rearrangement of columns does not change a permutation.

The set of all permutations of a finite set X is called the symmetric group on X. Notation: $S_{X}, \Sigma_{X}, \operatorname{Sym}(X)$.
The set of all permutations of $\{1,2, \ldots, n\}$ is called the symmetric group on n symbols and denoted $S(n)$ or S_{n}.

Theorem (i) For any two permutations $\pi, \sigma \in S_{X}$, the composition $\pi \sigma$ is also in S_{X}.
(ii) The identity function id_{X} is a permutation on X.
(iii) For any permutation $\pi \in S_{X}$, the inverse π^{-1} is in S_{X}.

Example. The symmetric group $S(3)$ consists of 6 permutations:
$\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right)$.

Theorem The symmetric group $S(n)$ has $n!=1 \cdot 2 \cdot 3 \cdots n$ elements.

Traditional argument: The number of elements in $S(n)$ is the number of different rearrangements $x_{1}, x_{2}, \ldots, x_{n}$ of the list $1,2, \ldots, n$. There are n possibilities to choose x_{1}. For any choice of x_{1}, there are $n-1$ possibilities to choose x_{2}. And so on. . .
Alternative argument: Any rearrangement of the list $1,2, \ldots, n$ can be obtained as follows. We take a rearrangement of $1,2, \ldots, n-1$ and then insert n into it. By the inductive assumption, there are ($n-1$)! ways to choose a rearrangement of $1,2, \ldots, n-1$. For any choice, there are n ways to insert n.

Product of permutations

Given two permutations π and σ, the composition $\pi \sigma$ is called the product of these permutations. Do not forget that the composition is evaluated from right to left: if $\tau=\pi \sigma$, then $\tau(x)=\pi(\sigma(x))$. In general, $\pi \sigma \neq \sigma \pi$.
To find $\pi \sigma$, we write π underneath σ (in two-row notation), then reorder the columns so that the second row of σ matches the first row of π, then erase the matching rows.
Example. $\pi=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1\end{array}\right), \sigma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4\end{array}\right)$.

$$
\begin{aligned}
& \sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 1 & 5 & 4
\end{array}\right) \quad \Longrightarrow \pi \sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 3 & 2 & 1 & 5
\end{array}\right) \\
& \pi=\left(\begin{array}{lllll}
3 & 2 & 1 & 5 & 4 \\
4 & 3 & 2 & 1 & 5
\end{array}\right) \quad \Longrightarrow \quad
\end{aligned}
$$

To find π^{-1}, we simply exchange the upper and lower rows:
$\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1\end{array}\right)^{-1}=\left(\begin{array}{lllll}2 & 3 & 4 & 5 & 1 \\ 1 & 2 & 3 & 4 & 5\end{array}\right)=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4\end{array}\right)$.

Cycles

A permutation π of a set X is called a cycle (or cyclic) of length r if there exist r distinct elements $x_{1}, x_{2}, \ldots, x_{r} \in X$ such that

$$
\pi\left(x_{1}\right)=x_{2}, \pi\left(x_{2}\right)=x_{3}, \ldots, \pi\left(x_{r-1}\right)=x_{r}, \pi\left(x_{r}\right)=x_{1},
$$

and $\pi(x)=x$ for any other $x \in X$.
Notation. $\pi=\left(\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right)$.
The identity function is (the only) cycle of length 1. Any cycle of length 2 is called a transposition.
The inverse of a cycle is also a cycle of the same length. Indeed, if $\pi=\left(\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right)$, then $\pi^{-1}=\left(\begin{array}{llll}x_{n} & x_{n-1} & \ldots & x_{2}\end{array} x_{1}\right)$.
Example. Any permutation of $\{1,2,3\}$ is a cycle.

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)=\operatorname{id},\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)=\left(\begin{array}{ll}
2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right), \\
& \left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 3
\end{array}\right) .
\end{aligned}
$$

Cycle decomposition

Let π be a permutation of X. We say that π moves an element $x \in X$ if $\pi(x) \neq x$. Otherwise π fixes x.

Two permutations π and σ are called disjoint if the set of elements moved by π is disjoint from the set of elements moved by σ.

Theorem If π and σ are disjoint permutations in $S(n)$, then they commute: $\pi \sigma=\sigma \pi$.

Theorem Any permutation can be expressed as a product of disjoint cycles. This cycle decomposition is unique up to rearrangement of the cycles involved.

Example. $\left(\begin{array}{cccccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8\end{array}\right)$
$=(1249375)(612811)$.

Order of a permutation

Let π be a permutation. The positive powers of π are defined inductively:

$$
\pi^{1}=\pi \quad \text { and } \quad \pi^{k+1}=\pi \cdot \pi^{k} \quad \text { for every integer } \quad k \geq 1
$$

The negative powers of π are defined as the positive powers of its inverse: $\pi^{-k}=\left(\pi^{-1}\right)^{k}$ for every positive integer k.
Finally, we set $\pi^{0}=\mathrm{id}$.
Theorem Let π be a permutation. Then there is a positive integer m such that $\pi^{m}=\mathrm{id}$.

The order of a permutation π, denoted $o(\pi)$, is defined as the smallest positive integer m such that $\pi^{m}=\mathrm{id}$.

Theorem Let π be a cyclic permutation. Then the order $o(\pi)$ is the length of the cycle π.

