MATH 433 Applied Algebra Lecture 10: Permutations.

Permutations

Let X be a finite set. A **permutation** of X is a bijection from X to itself.

Let $f: X \to X$ be a function. Given $x \in X$, the element y = f(x) is called the **image** of x under the function f. Also, x is called **preimage** of y under f.

The function $f : X \to X$ is **injective** (or **one-to-one**) if any $y \in X$ has at most one preimage. The function f is **surjective** (or **onto**) if any $y \in X$ has at least one preimage. The function f is **bijective** if any $y \in X$ has exactly one preimage.

The inverse function f^{-1} is defined by the rule

$$x = f^{-1}(y) \iff y = f(x).$$

The inverse f^{-1} exists if and only if f is a bijection. If f^{-1} exists then it is also a bijection.

Theorem If X is a finite set, then the following conditions on a function $f: X \to X$ are equivalent:

- f is injective,
- f is surjective,
- f is bijective.

Examples. • The identity function $id_X : X \to X$, $id_X(x) = x$ for every $x \in X$.

• Let G_n be the set of invertible congruence classes modulo n, $[a] \in G_n$, and define a function $f : G_n \to G_n$ by f([x]) = [a][x]. Then f is a permutation on G_n (which is the key fact in the proof of Euler's theorem).

Symmetric group

Permutations are traditionally denoted by Greek letters (π , σ , τ , ρ ,...).

Two-row notation.
$$\pi = \begin{pmatrix} a & b & c & \dots \\ \pi(a) & \pi(b) & \pi(c) & \dots \end{pmatrix}$$
,

where a, b, c, \ldots is a list of all elements in the domain of π . Rearrangement of columns does not change a permutation.

The set of all permutations of a finite set X is called the **symmetric group** on X. Notation: S_X , Σ_X , Sym(X).

The set of all permutations of $\{1, 2, ..., n\}$ is called the **symmetric group** on *n* symbols and denoted S(n) or S_n .

Theorem (i) For any two permutations $\pi, \sigma \in S_X$, the composition $\pi\sigma$ is also in S_X . (ii) The identity function id_X is a permutation on X. (iii) For any permutation $\pi \in S_X$, the inverse π^{-1} is in S_X . *Example.* The symmetric group S(3) consists of 6 permutations: $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$.

Theorem The symmetric group S(n) has $n! = 1 \cdot 2 \cdot 3 \cdots n$ elements.

Traditional argument: The number of elements in S(n) is the number of different rearrangements x_1, x_2, \ldots, x_n of the list $1, 2, \ldots, n$. There are *n* possibilities to choose x_1 . For any choice of x_1 , there are n-1 possibilities to choose x_2 . And so on...

Alternative argument: Any rearrangement of the list $1, 2, \ldots, n$ can be obtained as follows. We take a rearrangement of $1, 2, \ldots, n-1$ and then insert n into it. By the inductive assumption, there are (n-1)! ways to choose a rearrangement of $1, 2, \ldots, n-1$. For any choice, there are n ways to insert n.

Product of permutations

Given two permutations π and σ , the composition $\pi\sigma$ is called the **product** of these permutations. Do not forget that the composition is evaluated from right to left: if $\tau = \pi\sigma$, then $\tau(x) = \pi(\sigma(x))$. In general, $\pi\sigma \neq \sigma\pi$.

To find $\pi\sigma$, we write π underneath σ (in two-row notation), then reorder the columns so that the second row of σ matches the first row of π , then erase the matching rows.

Example.
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}, \ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix},$$

 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix},$
 $\pi = \begin{pmatrix} 3 & 2 & 1 & 5 & 4 \\ 4 & 3 & 2 & 1 & 5 \end{pmatrix} \implies \pi\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 1 & 5 \end{pmatrix}$

To find π^{-1} , we simply exchange the upper and lower rows: $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & 3 & 4 & 5 & 1 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}.$

Cycles

A permutation π of a set X is called a **cycle** (or **cyclic**) of length r if there exist r distinct elements $x_1, x_2, \ldots, x_r \in X$ such that

$$\pi(x_1) = x_2, \ \pi(x_2) = x_3, \dots, \ \pi(x_{r-1}) = x_r, \ \pi(x_r) = x_1,$$

and $\pi(x) = x$ for any other $x \in X$.
Notation. $\pi = (x_1 \ x_2 \ \dots \ x_n).$

The identity function is (the only) cycle of length 1. Any cycle of length 2 is called a **transposition**.

The inverse of a cycle is also a cycle of the same length. Indeed, if $\pi = (x_1 \ x_2 \ \dots \ x_n)$, then $\pi^{-1} = (x_n \ x_{n-1} \ \dots \ x_2 \ x_1)$.

Example. Any permutation of $\{1, 2, 3\}$ is a cycle. $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = id$, $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = (2 \ 3)$, $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = (1 \ 2)$, $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (1 \ 2 \ 3)$, $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = (1 \ 3 \ 2)$, $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = (1 \ 3)$.

Cycle decomposition

Let π be a permutation of X. We say that π **moves** an element $x \in X$ if $\pi(x) \neq x$. Otherwise π **fixes** x.

Two permutations π and σ are called **disjoint** if the set of elements moved by π is disjoint from the set of elements moved by σ .

Theorem If π and σ are disjoint permutations in S(n), then they commute: $\pi \sigma = \sigma \pi$.

Theorem Any permutation can be expressed as a product of disjoint cycles. This **cycle decomposition** is unique up to rearrangement of the cycles involved.

Example. $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8 \end{pmatrix}$ = $(1 \ 2 \ 4 \ 9 \ 3 \ 7 \ 5)(6 \ 12 \ 8 \ 11).$

Order of a permutation

Let π be a permutation. The positive **powers** of π are defined inductively:

$$\pi^1 = \pi$$
 and $\pi^{k+1} = \pi \cdot \pi^k$ for every integer $k \ge 1$.

The negative powers of π are defined as the positive powers of its inverse: $\pi^{-k} = (\pi^{-1})^k$ for every positive integer k. Finally, we set $\pi^0 = id$.

Theorem Let π be a permutation. Then there is a positive integer *m* such that $\pi^m = id$.

The **order** of a permutation π , denoted $o(\pi)$, is defined as the smallest positive integer *m* such that $\pi^m = id$.

Theorem Let π be a cyclic permutation. Then the order $o(\pi)$ is the length of the cycle π .