MATH 433 Applied Algebra Lecture 11: Order and sign of a permutation.

Permutations

Let X be a finite set. A **permutation** of X is a bijection from X to itself.

Two-row notation. $\pi = \begin{pmatrix} a & b & c & \cdots \\ \pi(a) & \pi(b) & \pi(c) & \cdots \end{pmatrix}$,

where a, b, c, \ldots is a list of all elements in the domain of π .

The set of all permutations of a finite set X is called the **symmetric group** on X. Notation: S_X , Σ_X , Sym(X). The set of all permutations of $\{1, 2, ..., n\}$ is called the

symmetric group on *n* symbols and denoted S(n) or S_n .

Given two permutations π and σ , the composition $\pi\sigma$ is called the **product** of these permutations. In general, $\pi\sigma \neq \sigma\pi$, i.e., multiplication of permutations is not commutative.

Cycles

A permutation π of a set X is called a **cycle** (or **cyclic**) of length r if there exist r distinct elements $x_1, x_2, \ldots, x_r \in X$ such that

 $\pi(x_1) = x_2, \ \pi(x_2) = x_3, \dots, \ \pi(x_{r-1}) = x_r, \ \pi(x_r) = x_1,$ and $\pi(x) = x$ for any other $x \in X$. Notation. $\pi = (x_1 \ x_2 \ \dots \ x_n).$

The identity function is (the only) cycle of length 1. Any cycle of length 2 is called a **transposition**. An **adjacent transposition** is a transposition of the form $(k \ k+1)$.

The inverse of a cycle is also a cycle of the same length. Indeed, if $\pi = (x_1 \ x_2 \ \dots \ x_n)$, then $\pi^{-1} = (x_n \ x_{n-1} \ \dots \ x_2 \ x_1)$.

Cycle decomposition

Let π be a permutation of X. We say that π **moves** an element $x \in X$ if $\pi(x) \neq x$. Otherwise π **fixes** x.

Two permutations π and σ are called **disjoint** if the set of elements moved by π is disjoint from the set of elements moved by σ .

Theorem Any permutation can be expressed as a product of disjoint cycles. This **cycle decomposition** is unique up to rearrangement of the cycles involved.

Examples. • $(1\ 2)(2\ 3)(3\ 4)(4\ 5)(5\ 6) = (1\ 2\ 3\ 4\ 5\ 6).$

- $(1 \ 2)(1 \ 3)(1 \ 4)(1 \ 5) = (1 \ 5 \ 4 \ 3 \ 2).$
- $(2 \ 4 \ 3)(1 \ 2)(2 \ 3 \ 4) = (1 \ 4).$

Powers of a permutation

Let π be a permutation. The positive **powers** of π are defined inductively:

 $\pi^1 = \pi \ \, \text{and} \ \ \pi^{k+1} = \pi \cdot \pi^k \ \, \text{for every integer} \ \ k \geq 1.$

The negative powers of π are defined as the positive powers of its inverse: $\pi^{-k} = (\pi^{-1})^k$ for every positive integer k. Finally, we set $\pi^0 = id$.

Theorem Let π be a permutation and $r, s \in \mathbb{Z}$. Then (i) $\pi^r \pi^s = \pi^{r+s}$, (ii) $(\pi^r)^s = \pi^{rs}$, (iii) $(\pi^r)^{-1} = \pi^{-r}$.

Idea of the proof: First one proves the theorem for positive r, s by induction (induction on r for (i) and (iii), induction on s for (ii)). Then the general case is reduced to the case of positive r, s.

Order of a permutation

Theorem Let π be a permutation. Then there is a positive integer *m* such that $\pi^m = id$.

Proof: Consider the list of powers: $\pi, \pi^2, \pi^3, \ldots$. Since there are only finitely many permutations of any finite set, there must be repetitions within the list. Assume that $\pi^r = \pi^s$ for some 0 < r < s. Then $\pi^{s-r} = \pi^s \pi^{-r} = \pi^s (\pi^r)^{-1} = \text{id.}$

The **order** of a permutation π , denoted $o(\pi)$, is defined as the smallest positive integer *m* such that $\pi^m = id$.

Theorem Let π be a permutation of order m. Then $\pi^r = \pi^s$ if and only if $r \equiv s \mod m$. In particular, $\pi^r = \text{id}$ if and only if the order m divides r.

Theorem Let π be a cyclic permutation. Then the order $o(\pi)$ is the length of the cycle π .

Examples. •
$$\pi = (1 \ 2 \ 3 \ 4 \ 5).$$

 $\pi^2 = (1 \ 3 \ 5 \ 2 \ 4), \ \pi^3 = (1 \ 4 \ 2 \ 5 \ 3),$
 $\pi^4 = (1 \ 5 \ 4 \ 3 \ 2), \ \pi^5 = \text{id.}$
 $\implies o(\pi) = 5.$

•
$$\sigma = (1 \ 2 \ 3 \ 4 \ 5 \ 6).$$

 $\sigma^2 = (1 \ 3 \ 5)(2 \ 4 \ 6), \ \sigma^3 = (1 \ 4)(2 \ 5)(3 \ 6),$
 $\sigma^4 = (1 \ 5 \ 3)(2 \ 6 \ 4), \ \sigma^5 = (1 \ 6 \ 5 \ 4 \ 3 \ 2), \ \sigma^6 = \text{id.}$
 $\implies o(\sigma) = 6.$

•
$$\tau = (1 \ 2 \ 3)(4 \ 5).$$

 $\tau^2 = (1 \ 3 \ 2), \ \tau^3 = (4 \ 5), \ \tau^4 = (1 \ 2 \ 3),$
 $\tau^5 = (1 \ 3 \ 2)(4 \ 5), \ \tau^6 = \mathrm{id}.$
 $\implies o(\tau) = 6.$

Lemma 1 Let π and σ be two commuting permutations: $\pi\sigma = \sigma\pi$. Then (i) the powers π^r and σ^s commute for all $r, s \in \mathbb{Z}$, (ii) $(\pi\sigma)^r = \pi^r \sigma^r$ for all $r \in \mathbb{Z}$,

Lemma 2 Let π and σ be disjoint permutations in S(n). Then (i) they commute: $\pi \sigma = \sigma \pi$, (ii) $(\pi \sigma)^r = \text{id}$ if and only if $\pi^r = \sigma^r = \text{id}$, (iii) $o(\pi \sigma) = \text{lcm}(o(\pi), o(\sigma))$.

Idea of the proof: The set $\{1, 2, ..., n\}$ splits into 3 subsets: elements moved by π , elements moved by σ , and elements fixed by both π and σ . All three sets are invariant under π and σ .

Theorem Let $\pi \in S(n)$ and suppose that $\pi = \sigma_1 \sigma_2 \dots \sigma_k$ is a decomposition of π as a product of disjoint cycles. Then the order of π is the least common multiple of the lengths of cycles $\sigma_1, \dots, \sigma_k$.

Sign of a permutation

Theorem 1 Given an integer $n \ge 1$, there exists a unique function $sgn: S(n) \rightarrow \{-1, 1\}$ such that

- $\operatorname{sgn}(\pi\sigma) = \operatorname{sgn}(\pi) \operatorname{sgn}(\sigma)$ for all $\pi, \sigma \in S(n)$,
- $\operatorname{sgn}(\tau) = -1$ for any transposition $\tau \in S(n)$.

The value of the function sgn on a particular permutation $\pi \in S(n)$ is called the **sign** of π .

If $sgn(\pi) = 1$, then π is said to be an **even** permutation. If $sgn(\pi) = -1$, then π is an **odd** permutation.

Theorem 2 (i) Any permutation is a product of transpositions. (ii) If $\pi = \tau_1 \tau_2 \dots \tau_n = \tau'_1 \tau'_2 \dots \tau'_m$, where τ_i, τ'_j are transpositions, then the numbers *n* and *m* are of the same parity.

Remark. Theorem 1 follows from Theorem 2. Indeed, we let $sgn(\pi) = 1$ if π is a product of an even number of transpositions and $sgn(\pi) = -1$ if π is a product of an odd number of transpositions.

Definition of determinant

Definition. det (a) = a,
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$
,
 $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}.$

If
$$A = (a_{ij})$$
 is an $n \times n$ matrix then

$$\det A = \sum_{\pi \in S(n)} \operatorname{sgn}(\pi) a_{1,\pi(1)} a_{2,\pi(2)} \dots a_{n,\pi(n)},$$

where π runs over all permutations of $\{1, 2, \ldots, n\}$.