MATH 433
Applied Algebra
Lecture 12:
Sign of a permutation (continued). Abstract groups.

## Permutations

Let $X$ be a finite set. A permutation of $X$ is a bijection from $X$ to itself. The set of all permutations of $\{1,2, \ldots, n\}$ is called the symmetric group on $n$ symbols and denoted $S(n)$.

Theorem Any permutation can be expressed as a product of disjoint cycles. This cycle decomposition is unique up to rearrangement of the cycles involved.

Theorem Let $\pi$ be a permutation. Then there is a positive integer $m$ such that $\pi^{m}=\mathrm{id}$.
The order of a permutation $\pi$, denoted $o(\pi)$, is defined as the smallest positive integer $m$ such that $\pi^{m}=\mathrm{id}$.

Theorem Let $\pi \in S(n)$ and suppose that $\pi=\sigma_{1} \sigma_{2} \ldots \sigma_{k}$ is a decomposition of $\pi$ as a product of disjoint cycles. Then the order of $\pi$ is the least common multiple of the lengths of cycles $\sigma_{1}, \ldots, \sigma_{k}$.

## Sign of a permutation

Theorem 1 (i) Any permutation is a product of transpositions.
(ii) If $\pi=\tau_{1} \tau_{2} \ldots \tau_{n}=\tau_{1}^{\prime} \tau_{2}^{\prime} \ldots \tau_{m}^{\prime}$, where $\tau_{i}, \tau_{j}^{\prime}$ are transpositions, then the numbers $n$ and $m$ are of the same parity.

A permutation $\pi$ is called even if it is a product of an even number of transpositions, and odd if it is a product of an odd number of transpositions.
The sign $\operatorname{sgn}(\pi)$ of the permutation $\pi$ is defined to be +1 if $\pi$ is even, and -1 if $\pi$ is odd.

Theorem 2 (i) $\operatorname{sgn}(\pi \sigma)=\operatorname{sgn}(\pi) \operatorname{sgn}(\sigma)$ for any $\pi, \sigma \in S(n)$.
(ii) $\operatorname{sgn}\left(\pi^{-1}\right)=\operatorname{sgn}(\pi)$ for any $\pi \in S(n)$.
(iii) $\operatorname{sgn}(\mathrm{id})=1$.
(iv) $\operatorname{sgn}(\tau)=-1$ for any transposition $\tau$.
(v) $\operatorname{sgn}(\sigma)=(-1)^{r-1}$ for any cycle $\sigma$ of length $r$.

Let $\pi \in S(n)$ and $i, j$ be integers, $1 \leq i<j \leq n$. We say that the permutation $\pi$ preserves order of the pair $(i, j)$ if $\pi(i)<\pi(j)$. Otherwise $\pi$ makes an inversion. Denote by $N(\pi)$ the number of inversions made by the permutation $\pi$.

Lemma 1 Let $\tau, \pi \in S(n)$ and suppose that $\tau$ is an adjacent transposition, $\tau=(k k+1)$. Then $|N(\tau \pi)-N(\pi)|=1$.
Proof: For every pair $(i, j), 1 \leq i<j \leq n$, let us compare the order of pairs $\pi(i), \pi(j)$ and $\tau \pi(i), \tau \pi(j)$. We observe that the order differs exactly for one pair, when $\{\pi(i), \pi(j)\}=\{k, k+1\}$. The lemma follows.

Lemma 2 Let $\pi \in S(n)$ and $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ be adjacent transpositions. Then (i) for any $\pi \in S(n)$ the numbers $k$ and $N\left(\tau_{1} \tau_{2} \ldots \tau_{k} \pi\right)-N(\pi)$ are of the same parity,
(ii) the numbers $k$ and $N\left(\tau_{1} \tau_{2} \ldots \tau_{k}\right)$ are of the same parity.

Sketch of the proof: (i) follows from Lemma 1 by induction on $k$. (ii) is a particular case of part (i), when $\pi=\mathrm{id}$.

Lemma 3 (i) Any cycle of length $r$ is a product of $r-1$ transpositions. (ii) Any transposition is a product of an odd number of adjacent transpositions.

$$
\text { Proof: (i) }\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{r}
\end{array}\right)=\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{ll}
x_{2} & x_{3}
\end{array}\right)\left(\begin{array}{ll}
x_{3} & x_{4}
\end{array}\right) \ldots\left(x_{r-1} x_{r}\right) .
$$

(ii) $(k k+r)=\sigma^{-1}(k k+1) \sigma$, where $\sigma=(k+1 k+2 \ldots k+r)$.

By the above, $\sigma=(k+1 k+2)(k+2 k+3) \ldots(k+r-1 k+r)$ and $\sigma^{-1}=(k+r k+r-1) \ldots(k+3 k+2)(k+2 k+1)$.

Theorem (i) Any permutation is a product of transpositions. (ii) If $\pi=\tau_{1} \tau_{2} \ldots \tau_{k}$, where $\tau_{i}$ are transpositions, then the numbers $k$ and $N(\pi)$ are of the same parity.
Proof: (i) Any permutation is a product of disjoint cycles. By Lemma 3, any cycle is a product of transpositions.
(ii) By Lemma 3, each of $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ is a product of an odd number of adjacent transpositions. Hence $\pi=\tau_{1}^{\prime} \tau_{2}^{\prime} \ldots \tau_{m}^{\prime}$, where $\tau_{i}^{\prime}$ are adjacent transpositions and number $m$ is of the same parity as $k$. By Lemma 2, $m$ has the same parity as $N(\pi)$.

## Definition of determinant

Definition. $\operatorname{det}(a)=a, \quad\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$,
\(\left|\begin{array}{lll}a_{11} \& a_{12} \& a_{13} <br>
a_{21} \& a_{22} \& a_{23} <br>

a_{31} \& a_{32} \& a_{33}\end{array}\right|=\)|  |
| ---: |
|  |
|  |
| $-a_{11} a_{22} a_{22} a_{31}+a_{12} a_{23} a_{31}+a_{12} a_{21} a_{33}-a_{21} a_{32}-$ |
| $a_{23} a_{32}$. |

If $A=\left(a_{i j}\right)$ is an $n \times n$ matrix then

$$
\operatorname{det} A=\sum_{\pi \in S(n)} \operatorname{sgn}(\pi) a_{1, \pi(1)} a_{2, \pi(2)} \ldots a_{n, \pi(n)}
$$

where $\pi$ runs over all permutations of $\{1,2, \ldots, n\}$.

## Alternating group

Given an integer $n \geq 2$, the alternating group on $n$ symbols, denoted $A_{n}$ or $A(n)$, is the set of all even permutations in the symmetric group $S(n)$.
Theorem (i) For any two permutations $\pi, \sigma \in A(n)$, the product $\pi \sigma$ is also in $A(n)$.
(ii) The identity function id is in $A(n)$.
(iii) For any permutation $\pi \in A(n)$, the inverse $\pi^{-1}$ is in $A(n)$.

In other words, the product of even permutations is even, the identity function is an even permutation, and the inverse of an even permutation is even.

Theorem The alternating group $A(n)$ has $n!/ 2$ elements.
Proof: Consider the function $F: A(n) \rightarrow S(n) \backslash A(n)$ given by $F(\pi)=(12) \pi$. One can observe that $F$ is bijective. It follows that the sets $A(n)$ and $S(n) \backslash A(n)$ have the same number of elements.

Examples. - The alternating group $A(3)$ has 3 elements: the identity function and two cycles of length 3, (1 23 ) and (1 3 2).

- The alternating group $A(4)$ has 12 elements of the following cycle shapes: id, (1 23 ), and (1 2)(34).
- The alternating group $A(5)$ has 60 elements of the following cycle shapes: id, (1 23 ), (1 2)(3 4), and (12 345 ).


## Abstract groups

Definition. A group is a set $G$, together with a binary operation $*$, that satisfies the following axioms:
(G1: closure)
for all elements $g$ and $h$ of $G, g * h$ is an element of $G$;
(G2: associativity)
$(g * h) * k=g *(h * k)$ for all $g, h, k \in G$;
(G3: existence of identity)
there exists an element $e \in G$, called the identity (or unit) of $G$, such that $e * g=g * e=g$ for all $g \in G$;
(G4: existence of inverse) for every $g \in G$ there exists an element $h \in G$, called the inverse of $g$, such that $g * h=h * g=e$.
The group $(G, *)$ is said to be commutative (or Abelian) if it satisfies an additional axiom:
(G5: commutativity) $g * h=h * g$ for all $g, h \in G$.

Basic examples. - Real numbers $\mathbb{R}$ with addition.
(G1) $x, y \in \mathbb{R} \Longrightarrow x+y \in \mathbb{R}$
(G2) $(x+y)+z=x+(y+z)$
(G3) the identity element is 0 as $x+0=0+x=x$
(G4) the inverse of $x$ is $-x$ as $x+(-x)=(-x)+x=0$
(G5) $x+y=y+x$

- Nonzero real numbers $\mathbb{R} \backslash\{0\}$ with multiplication.
$(\mathrm{G} 1) x \neq 0$ and $y \neq 0 \Longrightarrow x y \neq 0$
(G2) $(x y) z=x(y z)$
(G3) the identity element is 1 as $x 1=1 x=x$
(G4) the inverse of $x$ is $x^{-1}$ as $x x^{-1}=x^{-1} x=1$
(G5) $x y=y x$

The two basic examples give rise to two kinds of notation for a general group $(G, *)$.

Multiplicative notation: We think of the group operation * as some kind of multiplication, namely,

- $a * b$ is denoted $a b$,
- the identity element is denoted 1 ,
- the inverse of $g$ is denoted $g^{-1}$.

Additive notation: We think of the group operation $*$ as some kind of addition, namely,

- $a * b$ is denoted $a+b$,
- the identity element is denoted 0 ,
- the inverse of $g$ is denoted $-g$.

Remark. The additive notation is used only for commutative groups.

## More examples

- Integers $\mathbb{Z}$ with addition.
- $\mathbb{Z}_{n}$, i.e., congruence classes modulo $n$, with addition.
- $G_{n}$, i.e., invertible congruence classes modulo $n$, with multiplication.
- Permutations $S(n)$ with composition (= multiplication).
- Even permutations $A(n)$ with multiplication.
- Any vector space $V$ with addition.
- Invertible $n \times n$ matrices with multiplication.

