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Lecture 12:
Sign of a permutation (continued).

Abstract groups.



Permutations

Let X be a finite set. A permutation of X is a bijection
from X to itself. The set of all permutations of {1, 2, . . . , n}

is called the symmetric group on n symbols and denoted S(n).

Theorem Any permutation can be expressed as a product of
disjoint cycles. This cycle decomposition is unique up to
rearrangement of the cycles involved.

Theorem Let π be a permutation. Then there is a positive
integer m such that πm = id.

The order of a permutation π, denoted o(π), is defined as the
smallest positive integer m such that πm = id.

Theorem Let π ∈ S(n) and suppose that π = σ1σ2 . . . σk is
a decomposition of π as a product of disjoint cycles. Then
the order of π is the least common multiple of the lengths of
cycles σ1, . . . , σk .



Sign of a permutation

Theorem 1 (i) Any permutation is a product of transpositions.
(ii) If π = τ1τ2 . . . τn = τ ′

1
τ ′

2
. . . τ ′

m, where τi , τ
′

j are
transpositions, then the numbers n and m are of the same parity.

A permutation π is called even if it is a product of an even
number of transpositions, and odd if it is a product of an odd
number of transpositions.

The sign sgn(π) of the permutation π is defined to be +1 if
π is even, and −1 if π is odd.

Theorem 2 (i) sgn(πσ) = sgn(π) sgn(σ) for any π, σ ∈ S(n).
(ii) sgn(π−1) = sgn(π) for any π ∈ S(n).
(iii) sgn(id) = 1.
(iv) sgn(τ) = −1 for any transposition τ .
(v) sgn(σ) = (−1)r−1 for any cycle σ of length r .



Let π ∈ S(n) and i , j be integers, 1 ≤ i < j ≤ n. We say
that the permutation π preserves order of the pair (i , j) if
π(i) < π(j). Otherwise π makes an inversion. Denote by
N(π) the number of inversions made by the permutation π.

Lemma 1 Let τ, π ∈ S(n) and suppose that τ is an adjacent
transposition, τ = (k k+1). Then |N(τπ) − N(π)| = 1.

Proof: For every pair (i , j), 1 ≤ i < j ≤ n, let us compare
the order of pairs π(i), π(j) and τπ(i), τπ(j). We observe
that the order differs exactly for one pair, when
{π(i), π(j)} = {k , k+1}. The lemma follows.

Lemma 2 Let π ∈ S(n) and τ1, τ2, . . . , τk be adjacent
transpositions. Then (i) for any π ∈ S(n) the numbers k

and N(τ1τ2 . . . τkπ) − N(π) are of the same parity,
(ii) the numbers k and N(τ1τ2 . . . τk) are of the same parity.

Sketch of the proof: (i) follows from Lemma 1 by induction
on k . (ii) is a particular case of part (i), when π = id.



Lemma 3 (i) Any cycle of length r is a product of r−1
transpositions. (ii) Any transposition is a product of an odd
number of adjacent transpositions.

Proof: (i) (x1 x2 . . . xr) = (x1 x2)(x2 x3)(x3 x4) . . . (xr−1 xr).

(ii) (k k+r) = σ−1(k k+1)σ, where σ = (k+1 k+2 . . . k+r).

By the above, σ = (k+1 k+2)(k+2 k+3) . . . (k+r−1 k+r)
and σ−1 = (k+r k+r−1) . . . (k+3 k+2)(k+2 k+1).

Theorem (i) Any permutation is a product of transpositions.
(ii) If π = τ1τ2 . . . τk , where τi are transpositions, then the
numbers k and N(π) are of the same parity.

Proof: (i) Any permutation is a product of disjoint cycles.
By Lemma 3, any cycle is a product of transpositions.

(ii) By Lemma 3, each of τ1, τ2, . . . , τk is a product of an
odd number of adjacent transpositions. Hence π = τ ′

1
τ ′

2
. . . τ ′

m,
where τ ′

i are adjacent transpositions and number m is of the
same parity as k . By Lemma 2, m has the same parity as N(π).



Definition of determinant

Definition. det (a) = a,
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= a11a22a33 + a12a23a31 + a13a21a32−

−a13a22a31 − a12a21a33 − a11a23a32.

If A = (aij) is an n×n matrix then

det A =
∑

π∈S(n)

sgn(π) a1,π(1) a2,π(2) . . . an,π(n),

where π runs over all permutations of {1, 2, . . . , n}.



Alternating group

Given an integer n ≥ 2, the alternating group on n symbols,
denoted An or A(n), is the set of all even permutations in the
symmetric group S(n).

Theorem (i) For any two permutations π, σ ∈ A(n), the
product πσ is also in A(n).
(ii) The identity function id is in A(n).
(iii) For any permutation π ∈A(n), the inverse π−1 is in A(n).

In other words, the product of even permutations is even, the
identity function is an even permutation, and the inverse of an
even permutation is even.

Theorem The alternating group A(n) has n!/2 elements.

Proof: Consider the function F : A(n) → S(n) \ A(n) given
by F (π) = (1 2)π. One can observe that F is bijective. It
follows that the sets A(n) and S(n) \ A(n) have the same
number of elements.



Examples. • The alternating group A(3) has 3
elements: the identity function and two cycles of
length 3, (1 2 3) and (1 3 2).

• The alternating group A(4) has 12 elements of
the following cycle shapes: id, (1 2 3), and
(1 2)(3 4).

• The alternating group A(5) has 60 elements of
the following cycle shapes: id, (1 2 3), (1 2)(3 4),
and (1 2 3 4 5).



Abstract groups

Definition. A group is a set G , together with a binary
operation ∗, that satisfies the following axioms:

(G1: closure)
for all elements g and h of G , g ∗ h is an element of G ;

(G2: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ G ;

(G3: existence of identity)
there exists an element e ∈ G , called the identity (or unit)
of G , such that e ∗ g = g ∗ e = g for all g ∈ G ;

(G4: existence of inverse)
for every g ∈ G there exists an element h ∈ G , called the
inverse of g , such that g ∗ h = h ∗ g = e.

The group (G , ∗) is said to be commutative (or Abelian) if
it satisfies an additional axiom:

(G5: commutativity) g ∗ h = h ∗ g for all g , h ∈ G .



Basic examples. • Real numbers R with addition.

(G1) x , y ∈ R =⇒ x + y ∈ R

(G2) (x + y) + z = x + (y + z)

(G3) the identity element is 0 as x + 0 = 0 + x = x

(G4) the inverse of x is −x as x + (−x) = (−x) + x = 0

(G5) x + y = y + x

• Nonzero real numbers R \ {0} with multiplication.

(G1) x 6= 0 and y 6= 0 =⇒ xy 6= 0

(G2) (xy)z = x(yz)

(G3) the identity element is 1 as x1 = 1x = x

(G4) the inverse of x is x−1 as xx−1 = x−1x = 1

(G5) xy = yx



The two basic examples give rise to two kinds of notation for a
general group (G , ∗).

Multiplicative notation: We think of the group operation ∗
as some kind of multiplication, namely,

• a ∗ b is denoted ab,

• the identity element is denoted 1,

• the inverse of g is denoted g−1.

Additive notation: We think of the group operation ∗ as
some kind of addition, namely,

• a ∗ b is denoted a + b,

• the identity element is denoted 0,

• the inverse of g is denoted −g .

Remark. The additive notation is used only for commutative
groups.



More examples

• Integers Z with addition.

• Zn, i.e., congruence classes modulo n, with addition.

• Gn, i.e., invertible congruence classes modulo n, with
multiplication.

• Permutations S(n) with composition (= multiplication).

• Even permutations A(n) with multiplication.

• Any vector space V with addition.

• Invertible n×n matrices with multiplication.


