MATH 433 Applied Algebra Lecture 12: Sign of a permutation (continued). Abstract groups.

Permutations

Let X be a finite set. A **permutation** of X is a bijection from X to itself. The set of all permutations of $\{1, 2, ..., n\}$ is called the **symmetric group** on n symbols and denoted S(n).

Theorem Any permutation can be expressed as a product of disjoint cycles. This **cycle decomposition** is unique up to rearrangement of the cycles involved.

Theorem Let π be a permutation. Then there is a positive integer *m* such that $\pi^m = id$.

The **order** of a permutation π , denoted $o(\pi)$, is defined as the smallest positive integer *m* such that $\pi^m = id$.

Theorem Let $\pi \in S(n)$ and suppose that $\pi = \sigma_1 \sigma_2 \dots \sigma_k$ is a decomposition of π as a product of disjoint cycles. Then the order of π is the least common multiple of the lengths of cycles $\sigma_1, \dots, \sigma_k$.

Sign of a permutation

Theorem 1 (i) Any permutation is a product of transpositions. (ii) If $\pi = \tau_1 \tau_2 \dots \tau_n = \tau'_1 \tau'_2 \dots \tau'_m$, where τ_i, τ'_j are transpositions, then the numbers *n* and *m* are of the same parity.

A permutation π is called **even** if it is a product of an even number of transpositions, and **odd** if it is a product of an odd number of transpositions.

The sign $sgn(\pi)$ of the permutation π is defined to be +1 if π is even, and -1 if π is odd.

Theorem 2 (i) $\operatorname{sgn}(\pi\sigma) = \operatorname{sgn}(\pi) \operatorname{sgn}(\sigma)$ for any $\pi, \sigma \in S(n)$. **(ii)** $\operatorname{sgn}(\pi^{-1}) = \operatorname{sgn}(\pi)$ for any $\pi \in S(n)$. **(iii)** $\operatorname{sgn}(\operatorname{id}) = 1$. **(iv)** $\operatorname{sgn}(\tau) = -1$ for any transposition τ . **(v)** $\operatorname{sgn}(\sigma) = (-1)^{r-1}$ for any cycle σ of length r. Let $\pi \in S(n)$ and i, j be integers, $1 \le i < j \le n$. We say that the permutation π preserves order of the pair (i, j) if $\pi(i) < \pi(j)$. Otherwise π makes an **inversion**. Denote by $N(\pi)$ the number of inversions made by the permutation π .

Lemma 1 Let $\tau, \pi \in S(n)$ and suppose that τ is an adjacent transposition, $\tau = (k \ k+1)$. Then $|N(\tau\pi) - N(\pi)| = 1$.

Proof: For every pair (i, j), $1 \le i < j \le n$, let us compare the order of pairs $\pi(i), \pi(j)$ and $\tau\pi(i), \tau\pi(j)$. We observe that the order differs exactly for one pair, when $\{\pi(i), \pi(j)\} = \{k, k+1\}$. The lemma follows.

Lemma 2 Let $\pi \in S(n)$ and $\tau_1, \tau_2, \ldots, \tau_k$ be adjacent transpositions. Then (i) for any $\pi \in S(n)$ the numbers k and $N(\tau_1\tau_2\ldots\tau_k\pi) - N(\pi)$ are of the same parity, (ii) the numbers k and $N(\tau_1\tau_2\ldots\tau_k)$ are of the same parity. Sketch of the proof: (i) follows from Lemma 1 by induction on k. (ii) is a particular case of part (i), when $\pi = \text{id.}$

Lemma 3 (i) Any cycle of length r is a product of r-1 transpositions. **(ii)** Any transposition is a product of an odd number of adjacent transpositions.

Proof: (i) $(x_1 \ x_2 \ \dots \ x_r) = (x_1 \ x_2)(x_2 \ x_3)(x_3 \ x_4) \dots (x_{r-1} \ x_r).$ (ii) $(k \ k+r) = \sigma^{-1}(k \ k+1)\sigma$, where $\sigma = (k+1 \ k+2 \ \dots \ k+r).$ By the above, $\sigma = (k+1 \ k+2)(k+2 \ k+3) \dots (k+r-1 \ k+r)$ and $\sigma^{-1} = (k+r \ k+r-1) \dots (k+3 \ k+2)(k+2 \ k+1).$

Theorem (i) Any permutation is a product of transpositions. (ii) If $\pi = \tau_1 \tau_2 \dots \tau_k$, where τ_i are transpositions, then the numbers k and $N(\pi)$ are of the same parity.

Proof: (i) Any permutation is a product of disjoint cycles. By Lemma 3, any cycle is a product of transpositions.

(ii) By Lemma 3, each of $\tau_1, \tau_2, \ldots, \tau_k$ is a product of an odd number of adjacent transpositions. Hence $\pi = \tau'_1 \tau'_2 \ldots \tau'_m$, where τ'_i are adjacent transpositions and number *m* is of the same parity as *k*. By Lemma 2, *m* has the same parity as $N(\pi)$.

Definition of determinant

Definition. det (a) = a,
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$
,
 $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}.$

If
$$A = (a_{ij})$$
 is an $n \times n$ matrix then

$$\det A = \sum_{\pi \in S(n)} \operatorname{sgn}(\pi) a_{1,\pi(1)} a_{2,\pi(2)} \dots a_{n,\pi(n)},$$

where π runs over all permutations of $\{1, 2, \ldots, n\}$.

Alternating group

Given an integer $n \ge 2$, the **alternating group** on *n* symbols, denoted A_n or A(n), is the set of all even permutations in the symmetric group S(n).

Theorem (i) For any two permutations $\pi, \sigma \in A(n)$, the product $\pi\sigma$ is also in A(n). (ii) The identity function id is in A(n).

(iii) For any permutation $\pi \in A(n)$, the inverse π^{-1} is in A(n).

In other words, the product of even permutations is even, the identity function is an even permutation, and the inverse of an even permutation is even.

Theorem The alternating group A(n) has n!/2 elements.

Proof: Consider the function $F : A(n) \to S(n) \setminus A(n)$ given by $F(\pi) = (1 \ 2)\pi$. One can observe that F is bijective. It follows that the sets A(n) and $S(n) \setminus A(n)$ have the same number of elements. *Examples.* • The alternating group A(3) has 3 elements: the identity function and two cycles of length 3, $(1 \ 2 \ 3)$ and $(1 \ 3 \ 2)$.

• The alternating group A(4) has 12 elements of the following **cycle shapes**: id, (1 2 3), and (1 2)(3 4).

• The alternating group A(5) has 60 elements of the following cycle shapes: id, $(1 \ 2 \ 3)$, $(1 \ 2)(3 \ 4)$, and $(1 \ 2 \ 3 \ 4 \ 5)$.

Abstract groups

Definition. A **group** is a set G, together with a binary operation *, that satisfies the following axioms:

(G1: closure)

for all elements g and h of G, g * h is an element of G;

(G2: associativity)

(g*h)*k=g*(h*k) for all $g,h,k\in G$;

(G3: existence of identity)

there exists an element $e \in G$, called the **identity** (or **unit**) of G, such that e * g = g * e = g for all $g \in G$;

(G4: existence of inverse)

for every $g \in G$ there exists an element $h \in G$, called the **inverse** of g, such that g * h = h * g = e.

The group (G, *) is said to be **commutative** (or **Abelian**) if it satisfies an additional axiom:

(G5: commutativity) g * h = h * g for all $g, h \in G$.

Basic examples. • Real numbers
$$\mathbb{R}$$
 with addition.
(G1) $x, y \in \mathbb{R} \implies x + y \in \mathbb{R}$
(G2) $(x + y) + z = x + (y + z)$
(G3) the identity element is 0 as $x + 0 = 0 + x = x$
(G4) the inverse of x is $-x$ as $x + (-x) = (-x) + x = 0$
(G5) $x + y = y + x$

• Nonzero real numbers $\mathbb{R} \setminus \{0\}$ with multiplication. (G1) $x \neq 0$ and $y \neq 0 \implies xy \neq 0$ (G2) (xy)z = x(yz)(G3) the identity element is 1 as x1 = 1x = x(G4) the inverse of x is x^{-1} as $xx^{-1} = x^{-1}x = 1$ (G5) xy = yx The two basic examples give rise to two kinds of notation for a general group (G, *).

Multiplicative notation: We think of the group operation * as some kind of multiplication, namely,

- a * b is denoted ab,
- the identity element is denoted 1,
- the inverse of g is denoted g^{-1} .

Additive notation: We think of the group operation * as some kind of addition, namely,

- a * b is denoted a + b,
- the identity element is denoted 0,
- the inverse of g is denoted -g.

Remark. The additive notation is used **only** for commutative groups.

More examples

- \bullet Integers $\mathbb Z$ with addition.
- \mathbb{Z}_n , i.e., congruence classes modulo n, with addition.

• G_n , i.e., invertible congruence classes modulo n, with multiplication.

- Permutations S(n) with composition (= multiplication).
- Even permutations A(n) with multiplication.
- Any vector space V with addition.
- Invertible $n \times n$ matrices with multiplication.