MATH 433

Applied Algebra

Lecture 15:

Rings. Fields.

Vector spaces over a field.

Groups

Definition. A **group** is a set G, together with a binary operation *, that satisfies the following axioms:

(G1: closure)

for all elements g and h of G, g*h is an element of G;

(G2: associativity)

$$(g*h)*k = g*(h*k)$$
 for all $g,h,k \in G$;

(G3: existence of identity)

there exists an element $e \in G$, called the **identity** (or **unit**) of G, such that e * g = g * e = g for all $g \in G$;

(G4: existence of inverse)

for every $g \in G$ there exists an element $h \in G$, called the **inverse** of g, such that g * h = h * g = e.

The group (G, *) is said to be **commutative** (or **Abelian**) if it satisfies an additional axiom:

(G5: commutativity) g * h = h * g for all $g, h \in G$.

Semigroups

Definition. A **semigroup** is a nonempty set S, together with a binary operation *, that satisfies the following axioms:

(S1: closure)

for all elements g and h of S, g*h is an element of S;

(S2: associativity)

$$(g*h)*k = g*(h*k)$$
 for all $g,h,k \in S$.

The semigroup (S, *) is said to be a **monoid** if it satisfies an additional axiom:

(S3: existence of identity) there exists an element $e \in S$ such that e * g = g * e = g for all $g \in S$.

Additional useful properties of semigroups:

(S4: cancellation) $g * h_1 = g * h_2$ implies $h_1 = h_2$ and $h_1 * g = h_2 * g$ implies $h_1 = h_2$ for all $g, h_1, h_2 \in S$. **(S5: commutativity)** g * h = h * g for all $g, h \in S$.

Rings

Definition. A **ring** is a set R, together with two binary operations usually called **addition** and **multiplication** and denoted accordingly, such that

- R is an Abelian group under addition,
- *R* is a semigroup under multiplication,
- multiplication distributes over addition.

The complete list of axioms is as follows:

(R1) for all
$$x, y \in R$$
, $x + y$ is an element of R ;

(R2)
$$(x + y) + z = x + (y + z)$$
 for all $x, y, z \in R$;

(R3) there exists an element, denoted
$$0$$
, in R such that

$$x + 0 = 0 + x = x$$
 for all $x \in R$;

(R4) for every
$$x \in R$$
 there exists an element, denoted $-x$, in R such that $x + (-x) = (-x) + x = 0$;

(R5)
$$x + y = y + x$$
 for all $x, y \in R$;

(R6) for all
$$x, y \in R$$
, xy is an element of R ;

(R7)
$$(xy)z = x(yz)$$
 for all $x, y, z \in R$;

(R8)
$$x(y+z) = xy+xz$$
 and $(y+z)x = yx+zx$ for all $x, y, z \in R$.

Examples of rings

In most examples, addition and multiplication are naturally defined and verification of the axioms is straightforward.

- Real numbers \mathbb{R} .
- ullet Integers \mathbb{Z} .
- $2\mathbb{Z}$: even integers.
- \mathbb{Z}_n : congruence classes modulo n.
- $\mathcal{M}_n(\mathbb{R})$: all $n \times n$ matrices with real entries.
- $\mathcal{M}_n(\mathbb{Z})$: all $n \times n$ matrices with integer entries.
- $\mathbb{R}[X]$: polynomials in variable X with real coefficients.
- $\mathbb{R}(X)$: rational functions in variable X with real coefficients.
- All functions $f: \mathbb{R} \to \mathbb{R}$.
- **Zero ring**: any additive Abelian group with trivial multiplication: xy = 0 for all x and y.
 - Trivial ring {0}.

Zero-divisors

Theorem Let R be a ring. Then x0 = 0x = 0 for all $x \in R$.

Proof: Let y = x0. Then y + y = x0 + x0 = x(0 + 0)= x0 = y. It follows that (-y) + y + y = (-y) + y, hence y = 0. Similarly, one shows that 0x = 0.

A nonzero element x of a ring R is a **left zero-divisor** if xy = 0 for another nonzero element $y \in R$. The element y is called a **right zero-divisor**.

Examples. • In the ring \mathbb{Z}_6 , the zero-divisors are congruence classes $[2]_6$, $[3]_6$, and $[4]_6$, as $[2]_6[3]_6 = [4]_6[3]_6 = [0]_6$.

• In the ring $\mathcal{M}_n(\mathbb{R})$, the zero-divisors (both left and right) are nonzero matrices with zero determinant. For instance,

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

• In any zero ring, all nonzero elements are zero-divisors.

Integral domains

A ring R is called a **domain** if it has no zero-divisors.

Theorem Given a nontrivial ring R, the following are equivalent:

- R is a domain,
- $R \setminus \{0\}$ is a semigroup under multiplication,
- $R \setminus \{0\}$ is a semigroup with cancellation under multiplication.

Idea of the proof: No zero-divisors means that $R \setminus \{0\}$ is closed under multiplication. Further, if $a \neq 0$ then $ab = ac \implies a(b-c) = 0 \implies b-c = 0 \implies b = c$.

A ring R is called **commutative** if the multiplication is commutative. R is called a **ring with identity** if there exists an identity element for multiplication (denoted 1).

An **integral domain** is a nontrivial commutative ring with identity and no zero-divisors.

Fields

Definition. A **field** is a set *F*, together with two binary operations called **addition** and **multiplication** and denoted accordingly, such that

- F is an Abelian group under addition,
- $F \setminus \{0\}$ is an Abelian group under multiplication,
- multiplication distributes over addition.

In other words, the field is a commutative ring with identity $(1 \neq 0)$ such that any nonzero element has a multiplicative inverse.

Examples. • Real numbers \mathbb{R} .

- ullet Rational numbers \mathbb{Q} .
- ullet Complex numbers \mathbb{C} .
- \mathbb{Z}_p : congruence classes modulo p, where p is prime.
- $\mathbb{R}(X)$: rational functions in variable X with real coefficients.

Quotient field

Theorem A ring R with identity can be extended to a field if and only if it is an integral domain.

If R is an integral domain, then there is a smallest field F containing R called the **quotient field** of R. Any element of F is of the form $b^{-1}a$, where $a, b \in R$.

Examples. • The quotient field of \mathbb{Z} is \mathbb{Q} .

• The quotient field of $\mathbb{R}[X]$ is $\mathbb{R}(X)$.

Vector spaces over a field

Definition. Given a field F, a vector space V over F is an additive Abelian group endowed with an action of F called scalar multiplication or scaling.

An **action** of F on V is an operation that takes elements $\lambda \in F$ and $v \in V$ and gives an element, denoted λv , of V.

The scalar multiplication is to satisfy the following axioms:

- **(V1)** for all $v \in V$ and $\lambda \in F$, λv is an element of V; **(V2)** $\lambda(\mu v) = (\lambda \mu)v$ for all $v \in V$ and $\lambda, \mu \in F$;
- **(V3)** 1v = v for all $v \in V$;
- **(V4)** $(\lambda + \mu)v = \lambda v + \mu v$ for all $v \in V$ and $\lambda, \mu \in F$;
- **(V5)** $\lambda(v+w) = \lambda v + \lambda w$ for all $v, w \in V$ and $\lambda \in F$.

(Almost) all linear algebra developed for vector spaces over \mathbb{R} can be generalized to vector spaces over an arbitrary field F. This includes: linear independence, span, basis, dimension, linear operators, matrices, eigenvalues and eigenvectors.

Examples. • \mathbb{R} is a vector space over \mathbb{Q} .

ullet ${\mathbb C}$ is a vector space over ${\mathbb R}$ and over ${\mathbb Q}.$

Counterexample (lazy scaling). Consider the Abelian group $V = \mathbb{R}^n$ with a nonstandard scalar multiplication over \mathbb{R} :

$$otag egin{aligned} \hline r\odot \mathbf{a} &= \mathbf{a} \end{aligned} \ \ \text{for any} \ \ \mathbf{a} \in \mathbb{R}^n \ \ \text{and} \ \ r \in \mathbb{R}. \end{aligned}$$

 \iff a = a

V1.
$$r \odot \mathbf{a} = \mathbf{a} \in V$$

$$V2. (rs) \odot \mathbf{a} = r \odot (s \odot \mathbf{a})$$

$$V3. \ 1 \odot a = a \qquad \Longleftrightarrow a = a$$

V4.
$$(r+s) \odot \mathbf{a} = r \odot \mathbf{a} + s \odot \mathbf{a} \iff \mathbf{a} = \mathbf{a} + \mathbf{a}$$

V5. $r \odot (\mathbf{a} + \mathbf{b}) = r \odot \mathbf{a} + r \odot \mathbf{b} \iff \mathbf{a} + \mathbf{b} = \mathbf{a} + \mathbf{b}$

The only axiom that fails is V4.