MATH 433
 Applied Algebra

Lecture 15:
Rings. Fields.
Vector spaces over a field.

Groups

Definition. A group is a set G, together with a binary operation $*$, that satisfies the following axioms:
(G1: closure)
for all elements g and h of $G, g * h$ is an element of G;
(G2: associativity)
$(g * h) * k=g *(h * k)$ for all $g, h, k \in G$;
(G3: existence of identity)
there exists an element $e \in G$, called the identity (or unit) of G, such that $e * g=g * e=g$ for all $g \in G$;
(G4: existence of inverse) for every $g \in G$ there exists an element $h \in G$, called the inverse of g, such that $g * h=h * g=e$.
The group $(G, *)$ is said to be commutative (or Abelian) if it satisfies an additional axiom:
(G5: commutativity) $g * h=h * g$ for all $g, h \in G$.

Semigroups

Definition. A semigroup is a nonempty set S, together with a binary operation $*$, that satisfies the following axioms:
(S1: closure)
for all elements g and h of $S, g * h$ is an element of S;
(S2: associativity)
$(g * h) * k=g *(h * k)$ for all $g, h, k \in S$.
The semigroup $(S, *)$ is said to be a monoid if it satisfies an additional axiom:
(S3: existence of identity) there exists an element $e \in S$ such that $e * g=g * e=g$ for all $g \in S$.
Additional useful properties of semigroups:
(S4: cancellation) $g * h_{1}=g * h_{2}$ implies $h_{1}=h_{2}$ and $h_{1} * g=h_{2} * g$ implies $h_{1}=h_{2}$ for all $g, h_{1}, h_{2} \in S$.
(S5: commutativity) $g * h=h * g$ for all $g, h \in S$.

Rings

Definition. A ring is a set R, together with two binary operations usually called addition and multiplication and denoted accordingly, such that

- R is an Abelian group under addition,
- R is a semigroup under multiplication,
- multiplication distributes over addition.

The complete list of axioms is as follows:
(R1) for all $x, y \in R, \quad x+y$ is an element of R;
(R2) $(x+y)+z=x+(y+z)$ for all $x, y, z \in R$;
(R3) there exists an element, denoted 0 , in R such that
$x+0=0+x=x$ for all $x \in R$;
(R4) for every $x \in R$ there exists an element, denoted $-x$, in R such that $x+(-x)=(-x)+x=0$;
(R5) $x+y=y+x$ for all $x, y \in R$;
(R6) for all $x, y \in R, \quad x y$ is an element of R;
(R7) $(x y) z=x(y z)$ for all $x, y, z \in R$;
(R8) $x(y+z)=x y+x z$ and $(y+z) x=y x+z x$ for all $x, y, z \in R$.

Examples of rings

In most examples, addition and multiplication are naturally defined and verification of the axioms is straightforward.

- Real numbers \mathbb{R}.
- Integers \mathbb{Z}.
- $2 \mathbb{Z}$: even integers.
- \mathbb{Z}_{n} : congruence classes modulo n.
- $\mathcal{M}_{n}(\mathbb{R})$: all $n \times n$ matrices with real entries.
- $\mathcal{M}_{n}(\mathbb{Z})$: all $n \times n$ matrices with integer entries.
- $\mathbb{R}[X]$: polynomials in variable X with real coefficients.
- $\mathbb{R}(X)$: rational functions in variable X with real coefficients.
- All functions $f: \mathbb{R} \rightarrow \mathbb{R}$.
- Zero ring: any additive Abelian group with trivial multiplication: $x y=0$ for all x and y.
- Trivial ring $\{0\}$.

Zero-divisors

Theorem Let R be a ring. Then $x 0=0 x=0$ for all $x \in R$.
Proof: Let $y=x 0$. Then $y+y=x 0+x 0=x(0+0)$ $=x 0=y$. It follows that $(-y)+y+y=(-y)+y$, hence $y=0$. Similarly, one shows that $0 x=0$.

A nonzero element x of a ring R is a left zero-divisor if $x y=0$ for another nonzero element $y \in R$. The element y is called a right zero-divisor.

Examples. - In the ring \mathbb{Z}_{6}, the zero-divisors are congruence classes $[2]_{6},[3]_{6}$, and $[4]_{6}$, as $[2]_{6}[3]_{6}=[4]_{6}[3]_{6}=[0]_{6}$.

- In the ring $\mathcal{M}_{n}(\mathbb{R})$, the zero-divisors (both left and right) are nonzero matrices with zero determinant. For instance, $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right), \quad\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)^{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
- In any zero ring, all nonzero elements are zero-divisors.

Integral domains

A ring R is called a domain if it has no zero-divisors.
Theorem Given a nontrivial ring R, the following are equivalent:

- R is a domain,
- $R \backslash\{0\}$ is a semigroup under multiplication,
- $R \backslash\{0\}$ is a semigroup with cancellation under multiplication.
Idea of the proof: No zero-divisors means that $R \backslash\{0\}$ is closed under multiplication. Further, if $a \neq 0$ then $a b=a c$ $\Longrightarrow a(b-c)=0 \Longrightarrow b-c=0 \Longrightarrow b=c$.
A ring R is called commutative if the multiplication is commutative. R is called a ring with identity if there exists an identity element for multiplication (denoted 1).
An integral domain is a nontrivial commutative ring with identity and no zero-divisors.

Fields

Definition. A field is a set F, together with two binary operations called addition and multiplication and denoted accordingly, such that

- F is an Abelian group under addition,
- $F \backslash\{0\}$ is an Abelian group under multiplication,
- multiplication distributes over addition.

In other words, the field is a commutative ring with identity $(1 \neq 0)$ such that any nonzero element has a multiplicative inverse.

Examples. - Real numbers \mathbb{R}.

- Rational numbers \mathbb{Q}.
- Complex numbers \mathbb{C}.
- \mathbb{Z}_{p} : congruence classes modulo p, where p is prime.
- $\mathbb{R}(X)$: rational functions in variable X with real coefficients.

Quotient field

Theorem A ring R with identity can be extended to a field if and only if it is an integral domain.

If R is an integral domain, then there is a smallest field F containing R called the quotient field of R.
Any element of F is of the form $b^{-1} a$, where $a, b \in R$.

Examples. - The quotient field of \mathbb{Z} is \mathbb{Q}.

- The quotient field of $\mathbb{R}[X]$ is $\mathbb{R}(X)$.

Vector spaces over a field

Definition. Given a field F, a vector space V over F is an additive Abelian group endowed with an action of F called scalar multiplication or scaling.
An action of F on V is an operation that takes elements $\lambda \in F$ and $v \in V$ and gives an element, denoted λv, of V.
The scalar multiplication is to satisfy the following axioms:
(V1) for all $v \in V$ and $\lambda \in F, \lambda v$ is an element of V; (V2) $\lambda(\mu v)=(\lambda \mu) v$ for all $v \in V$ and $\lambda, \mu \in F$;
(V3) $1 v=v$ for all $v \in V$;
(V4) $(\lambda+\mu) v=\lambda v+\mu v$ for all $v \in V$ and $\lambda, \mu \in F$;
(V5) $\lambda(v+w)=\lambda v+\lambda w$ for all $v, w \in V$ and $\lambda \in F$.
(Almost) all linear algebra developed for vector spaces over \mathbb{R} can be generalized to vector spaces over an arbitrary field F. This includes: linear independence, span, basis, dimension, linear operators, matrices, eigenvalues and eigenvectors.

Examples. • \mathbb{R} is a vector space over \mathbb{Q}.

- \mathbb{C} is a vector space over \mathbb{R} and over \mathbb{Q}.

Counterexample (lazy scaling). Consider the Abelian group $V=\mathbb{R}^{n}$ with a nonstandard scalar multiplication over \mathbb{R} :

$$
r \odot \mathbf{a}=\mathbf{a} \text { for any } \mathbf{a} \in \mathbb{R}^{n} \text { and } r \in \mathbb{R}
$$

V1. $r \odot \mathbf{a}=\mathbf{a} \in V$
V2. $(r s) \odot \mathbf{a}=r \odot(s \odot \mathbf{a})$
V3. $1 \odot \mathbf{a}=\mathbf{a}$

$$
\Longleftrightarrow \mathbf{a}=\mathbf{a}
$$

$\Longleftrightarrow \mathbf{a}=\mathbf{a}$
V4. $(r+s) \odot \mathbf{a}=r \odot \mathbf{a}+s \odot \mathbf{a} \Longleftrightarrow \mathbf{a}=\mathbf{a}+\mathbf{a}$
V5. $r \odot(\mathbf{a}+\mathbf{b})=r \odot \mathbf{a}+r \odot \mathbf{b} \Longleftrightarrow \mathbf{a}+\mathbf{b}=\mathbf{a}+\mathbf{b}$
The only axiom that fails is V 4 .

