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Lecture 16:

Algebraic structures (continued).



Ring

Definition. A ring is a set R , together with two binary
operations usually called addition and multiplication and
denoted accordingly, such that

• R is an Abelian group under addition,

• R is a semigroup under multiplication,

• multiplication distributes over addition.

A ring R is called commutative if the multiplication is
commutative. R is called a ring with identity if there exists
an identity element for multiplication (denoted 1).

An integral domain is a nontrivial commutative ring with
identity and no zero-divisors (i.e., ab = 0 implies a = 0 or
b = 0).



Examples of rings

• Real numbers R.

• Integers Z.

• 2Z: even integers.

• Zn: congruence classes modulo n.

• Mn(R): all n×n matrices with real entries.

• Mn(Z): all n×n matrices with integer entries.

• Mn(R): all n×n matrices with entries from a ring R .

• R[X ]: polynomials in variable X with real coefficients.

• Z[X ]: polynomials in variable X with integer coefficients.

• R[X ]: polynomials in variable X with coefficients from a
ring R .

• R(X ): rational functions in variable X with real coefficients.

• All functions f : R → R.



Field

Definition. A field is a set F , together with two binary
operations called addition and multiplication and denoted
accordingly, such that

• F is an Abelian group under addition,

• F \ {0} is an Abelian group under multiplication,

• multiplication distributes over addition.

In other words, the field is an integral domain such that any
nonzero element has a multiplicative inverse.

Examples. • Real numbers R.

• Rational numbers Q.

• Zp: congruence classes modulo p, where p is prime.

• R(X ): rational functions in variable X with real coefficients.

• F (X ): rational functions in variable X with coefficients
from a field F .



Quadratic extension
Consider the set Z[

√
2] of all numbers of the form a + b

√
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where a, b ∈ Z. This set is closed under addition,
subtraction, and multiplication:
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It follows that Z[
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2] is a ring. Actually, it is an integral
domain. The quotient field of Z[
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The field Q[
√

2] is a quadratic extension of the field Q.
Similarly, the field C is a quadratic extension of R,
C = R[

√
−1].



Vector space over a field

Definition. Given a field F , a vector space V over F is an
additive Abelian group endowed with an action of F called
scalar multiplication or scaling.

An action of F on V is an operation that takes elements
λ ∈ F and v ∈ V and gives an element, denoted λv , of V .

The scalar multiplication is to satisfy the following axioms:

(V1) for all v ∈ V and λ ∈ F , λv is an element of V ;

(V2) λ(µv) = (λµ)v for all v ∈ V and λ, µ ∈ F ;

(V3) 1v = v for all v ∈ V ;

(V4) (λ + µ)v = λv + µv for all v ∈ V and λ, µ ∈ F ;

(V5) λ(v + w) = λv + λw for all v , w ∈ V and λ ∈ F .



Examples of vector spaces over a field F :

• The space F n of n-dimensional coordinate
vectors (x1, x2, . . . , xn) with coordinates in F .

• The space Mn,m(F ) of n×m matrices with
entries in F .

• The space F [X ] of polynomials
p(x) = a0 + a1X + · · ·+ anX

n with coefficients in F .

• Any field F ′ that is an extension of F (i.e.,
F ⊂ F ′ and the operations on F are restrictions of
the corresponding operations on F ′). In particular,
C is a vector space over R and over Q, R is a
vector space over Q, Q[

√
2] is a vector space over

Q.



Characteristic of a field

A field F is said to be of nonzero characteristic if
1 + 1 + · · · + 1
︸ ︷︷ ︸

n times

= 0 for some positive integer n. The smallest

integer with this property is the characteristic of F .
Otherwise the field F has characteristic 0.

The fields Q, R, C have characteristic 0.
The field Zp (p prime) has characteristic p.

Since (1 + · · · + 1
︸ ︷︷ ︸

n times

)(1 + · · · + 1
︸ ︷︷ ︸

m times

) = 1 + · · · + 1
︸ ︷︷ ︸

nm times

, any nonzero

characteristic is prime.

Any field of characteristic 0 has a unique structure of the
vector space over Q. Any field of characteristic p > 0 has a
unique structure of the vector space over Zp. It follows that
any finite field F of charasteristic p has pn elements (where n

is the dimension of F as a vector space over Zp).



Algebra over a field

Definition. An algebra A over a field F (or F -algebra) is a
vector space with a multiplication which is a bilinear operation
on A. That is, the product xy is both a linear function of x

and a linear function of y .

To be precise, the following axioms are to be satisfied:

(A1) for all x , y ∈ A, the product xy is an element of A;
(A2) x(y+z) = xy+xz and (y+z)x = yx+zx for x , y , z ∈A;
(A3) (λx)y = λ(xy) = x(λy) for all x , y ∈ A and λ ∈ F .

An F -algebra is associative if the multiplication is associative.
An associative algebra is both a vector space and a ring.

An F -algebra A is a Lie algebra if the multiplication (usually
denoted [x , y ] in this case) satisfies the following conditions:

(Antisymmetry): [x , y ] = −[y , x ] for all x , y ∈ A;
(Jacobi’s identity): [[x , y ], z ] + [[y , z ], x ] + [[z , x ], y ] = 0
for all x , y , z ∈ A.



Examples of associative algebras:

• The space Mn(F ) of n×n matrices with entries in F .

• The space F [X ] of polynomials
p(x) = a0 + a1X + · · · + anX

n with coefficients in F .

• The space of all functions f : S → F on a set S taking
values in a field F .

• Any field F ′ that is an extension of a field F is an
associative algebra over F .

Examples of Lie algebras:

• R3 with the cross product is a Lie algebra over R.

• Any associative algebra A with an alternative multiplication
defined by [x , y ] = xy − yx .



Finite projective plane

A projective plane is a set P of points, together with
selected subsets called lines, such that (i) there is exactly one
line containing any two distinct points, (ii) any two distinct
lines intersect at a single point, and (iii) there are 4 points no
3 of which lie on the same line.

A projective transformation of the plane P is a bijection
f : P → P that sends lines to lines. All projective
transformations of P form a transformation group.

The smallest projective plane (called the Fano plane) has 7
points. It also has 7 lines, each line consisting of 3 points.



Fano plane

The Fano plane can be realized as the set of nonzero vectors
in Z3

2, a 3-dimensional vector space over the field Z2. Each
line has the form ℓ \ {(0, 0, 0)}, where ℓ is a 2-dimensional
subspace of Z3

2.

In this realization, the projective transformations of the Fano
plane correspond to invertible linear operators on Z3

2. Hence
the group of all projective transformations can be identified
with the group GL(3, Z2) of 3×3 matrices with entries from
Z2 and nonzero determinant. This group has 168 elements.


