MATH 433
 Applied Algebra

Lecture 16:
Algebraic structures (continued).

Ring

Definition. A ring is a set R, together with two binary operations usually called addition and multiplication and denoted accordingly, such that

- R is an Abelian group under addition,
- R is a semigroup under multiplication,
- multiplication distributes over addition.

A ring R is called commutative if the multiplication is commutative. R is called a ring with identity if there exists an identity element for multiplication (denoted 1).
An integral domain is a nontrivial commutative ring with identity and no zero-divisors (i.e., $a b=0$ implies $a=0$ or $b=0$).

Examples of rings

- Real numbers \mathbb{R}.
- Integers \mathbb{Z}.
- $2 \mathbb{Z}$: even integers.
- \mathbb{Z}_{n} : congruence classes modulo n.
- $\mathcal{M}_{n}(\mathbb{R})$: all $n \times n$ matrices with real entries.
- $\mathcal{M}_{n}(\mathbb{Z})$: all $n \times n$ matrices with integer entries.
- $\mathcal{M}_{n}(R)$: all $n \times n$ matrices with entries from a ring R.
- $\mathbb{R}[X]$: polynomials in variable X with real coefficients.
- $\mathbb{Z}[X]$: polynomials in variable X with integer coefficients.
- $R[X]$: polynomials in variable X with coefficients from a ring R.
- $\mathbb{R}(X)$: rational functions in variable X with real coefficients.
- All functions $f: \mathbb{R} \rightarrow \mathbb{R}$.

Field

Definition. A field is a set F, together with two binary operations called addition and multiplication and denoted accordingly, such that

- F is an Abelian group under addition,
- $F \backslash\{0\}$ is an Abelian group under multiplication,
- multiplication distributes over addition.

In other words, the field is an integral domain such that any nonzero element has a multiplicative inverse.

Examples. - Real numbers \mathbb{R}.

- Rational numbers \mathbb{Q}.
- \mathbb{Z}_{p} : congruence classes modulo p, where p is prime.
- $\mathbb{R}(X)$: rational functions in variable X with real coefficients.
- $F(X)$: rational functions in variable X with coefficients from a field F.

Quadratic extension

Consider the set $\mathbb{Z}[\sqrt{2}]$ of all numbers of the form $a+b \sqrt{2}$, where $a, b \in \mathbb{Z}$. This set is closed under addition, subtraction, and multiplication:
$(a+b \sqrt{2})+(c+d \sqrt{2})=(a+c)+(b+d) \sqrt{2}$,
$(a+b \sqrt{2})-(c+d \sqrt{2})=(a-c)+(b-d) \sqrt{2}$,
$(a+b \sqrt{2})(c+d \sqrt{2})=(a c+2 b d)+(a d+b c) \sqrt{2}$.
It follows that $\mathbb{Z}[\sqrt{2}]$ is a ring. Actually, it is an integral domain. The quotient field of $\mathbb{Z}[\sqrt{2}]$ is $\mathbb{Q}(\sqrt{2})$, the set of all fractions $\frac{a+b \sqrt{2}}{c+d \sqrt{2}}$, where $a, b, c, d \in \mathbb{Q}$ and $|c|+|d| \neq 0$. In fact, $\mathbb{Q}(\sqrt{2})=\mathbb{Q}[\sqrt{2}]$:
$\frac{1}{c+d \sqrt{2}}=\frac{c-d \sqrt{2}}{(c+d \sqrt{2})(c-d \sqrt{2})}=\frac{c}{c^{2}-2 d^{2}}-\frac{d}{c^{2}-2 d^{2}} \sqrt{2}$.
The field $\mathbb{Q}[\sqrt{2}]$ is a quadratic extension of the field \mathbb{Q}. Similarly, the field \mathbb{C} is a quadratic extension of \mathbb{R}, $\mathbb{C}=\mathbb{R}[\sqrt{-1}]$.

Vector space over a field

Definition. Given a field F, a vector space V over F is an additive Abelian group endowed with an action of F called scalar multiplication or scaling.

An action of F on V is an operation that takes elements $\lambda \in F$ and $v \in V$ and gives an element, denoted λv, of V.

The scalar multiplication is to satisfy the following axioms:
(V1) for all $v \in V$ and $\lambda \in F, \lambda v$ is an element of V;
(V2) $\lambda(\mu v)=(\lambda \mu) v$ for all $v \in V$ and $\lambda, \mu \in F$;
(V3) $1 v=v$ for all $v \in V$;
(V4) $(\lambda+\mu) v=\lambda v+\mu v$ for all $v \in V$ and $\lambda, \mu \in F$;
(V5) $\lambda(v+w)=\lambda v+\lambda w$ for all $v, w \in V$ and $\lambda \in F$.

Examples of vector spaces over a field F :

- The space F^{n} of n-dimensional coordinate vectors $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with coordinates in F.
- The space $\mathcal{M}_{n, m}(F)$ of $n \times m$ matrices with entries in F.
- The space $F[X]$ of polynomials $p(x)=a_{0}+a_{1} X+\cdots+a_{n} X^{n}$ with coefficients in F.
- Any field F^{\prime} that is an extension of F (i.e., $F \subset F^{\prime}$ and the operations on F are restrictions of the corresponding operations on F^{\prime}). In particular, \mathbb{C} is a vector space over \mathbb{R} and over \mathbb{Q}, \mathbb{R} is a vector space over $\mathbb{Q}, \mathbb{Q}[\sqrt{2}]$ is a vector space over \mathbb{Q}.

Characteristic of a field

A field F is said to be of nonzero characteristic if
$\underbrace{1+1+\cdots+1}=0$ for some positive integer n. The smallest n times
integer with this property is the characteristic of F.
Otherwise the field F has characteristic 0 .
The fields $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ have characteristic 0 .
The field \mathbb{Z}_{p} (p prime) has characteristic p.
Since $(\underbrace{1+\cdots+1}_{n \text { times }})(\underbrace{1+\cdots+1}_{m \text { times }})=\underbrace{1+\cdots+1}_{n m \text { times }}$, any nonzero
characteristic is prime.
Any field of characteristic 0 has a unique structure of the vector space over \mathbb{Q}. Any field of characteristic $p>0$ has a unique structure of the vector space over \mathbb{Z}_{p}. It follows that any finite field F of charasteristic p has p^{n} elements (where n is the dimension of F as a vector space over \mathbb{Z}_{p}).

Algebra over a field

Definition. An algebra A over a field F (or F-algebra) is a vector space with a multiplication which is a bilinear operation on A. That is, the product $x y$ is both a linear function of x and a linear function of y.
To be precise, the following axioms are to be satisfied:
(A1) for all $x, y \in A$, the product $x y$ is an element of A;
(A2) $x(y+z)=x y+x z$ and $(y+z) x=y x+z x$ for $x, y, z \in A$;
(A3) $(\lambda x) y=\lambda(x y)=x(\lambda y)$ for all $x, y \in A$ and $\lambda \in F$.
An F-algebra is associative if the multiplication is associative. An associative algebra is both a vector space and a ring.
An F-algebra A is a Lie algebra if the multiplication (usually denoted $[x, y]$ in this case) satisfies the following conditions:
(Antisymmetry): $[x, y]=-[y, x]$ for all $x, y \in A$; (Jacobi's identity): $[[x, y], z]+[[y, z], x]+[[z, x], y]=0$ for all $x, y, z \in A$.

Examples of associative algebras:

- The space $\mathcal{M}_{n}(F)$ of $n \times n$ matrices with entries in F.
- The space $F[X]$ of polynomials $p(x)=a_{0}+a_{1} X+\cdots+a_{n} X^{n}$ with coefficients in F.
- The space of all functions $f: S \rightarrow F$ on a set S taking values in a field F.
- Any field F^{\prime} that is an extension of a field F is an associative algebra over F.

Examples of Lie algebras:

- \mathbb{R}^{3} with the cross product is a Lie algebra over \mathbb{R}.
- Any associative algebra A with an alternative multiplication defined by $[x, y]=x y-y x$.

Finite projective plane

A projective plane is a set P of points, together with selected subsets called lines, such that (i) there is exactly one line containing any two distinct points, (ii) any two distinct lines intersect at a single point, and (iii) there are 4 points no 3 of which lie on the same line.

A projective transformation of the plane P is a bijection $f: P \rightarrow P$ that sends lines to lines. All projective transformations of P form a transformation group.

The smallest projective plane (called the Fano plane) has 7 points. It also has 7 lines, each line consisting of 3 points.

Fano plane

The Fano plane can be realized as the set of nonzero vectors in \mathbb{Z}_{2}^{3}, a 3-dimensional vector space over the field \mathbb{Z}_{2}. Each line has the form $\ell \backslash\{(0,0,0)\}$, where ℓ is a 2-dimensional subspace of \mathbb{Z}_{2}^{3}.
In this realization, the projective transformations of the Fano plane correspond to invertible linear operators on \mathbb{Z}_{2}^{3}. Hence the group of all projective transformations can be identified with the group $G L\left(3, \mathbb{Z}_{2}\right)$ of 3×3 matrices with entries from \mathbb{Z}_{2} and nonzero determinant. This group has 168 elements.

