MATH 433 Applied Algebra Lecture 17:

Order of an element in a group. Subgroups.

Groups

Definition. A **group** is a set G, together with a binary operation *, that satisfies the following axioms:

(G1: closure)

for all elements g and h of G, g * h is an element of G;

(G2: associativity)

(g * h) * k = g * (h * k) for all $g, h, k \in G$;

(G3: existence of identity)

there exists an element $e \in G$, called the **identity** (or **unit**) of G, such that e * g = g * e = g for all $g \in G$;

(G4: existence of inverse)

for every $g \in G$ there exists an element $h \in G$, called the **inverse** of g, such that g * h = h * g = e.

The group (G, *) is said to be **commutative** (or **Abelian**) if it satisfies an additional axiom:

(G5: commutativity) g * h = h * g for all $g, h \in G$.

Basic properties of groups

- The identity element is unique.
- The inverse element is unique.

• $(g^{-1})^{-1} = g$. In other words, $h = g^{-1}$ if and only if $g = h^{-1}$.

•
$$(gh)^{-1} = h^{-1}g^{-1}$$
.

•
$$(g_1g_2\ldots g_n)^{-1}=g_n^{-1}\ldots g_2^{-1}g_1^{-1}$$

• Cancellation properties: $gh_1 = gh_2 \implies$ $h_1 = h_2$ and $h_1g = h_2g \implies h_1 = h_2$ for all $g, h_1, h_2 \in G$.

Indeed, $gh_1 = gh_2 \implies g^{-1}(gh_1) = g^{-1}(gh_2)$ $\implies (g^{-1}g)h_1 = (g^{-1}g)h_2 \implies eh_1 = eh_2 \implies h_1 = h_2.$ Similarly, $h_1g = h_2g \implies h_1 = h_2.$

Equations in groups

Theorem Let G be a group. For any $a, b, c \in G$,

- the equation ax = b has a unique solution $x = a^{-1}b$;
- the equation ya = b has a unique solution $y = ba^{-1}$;
- the equation azc = b has a unique solution $z = a^{-1}bc^{-1}$.

Problem. Solve an equation in the group S(5): (1 2 4)(3 5) π (2 3 4 5) = (1 5). Solution: $\pi = ((1 2 4)(3 5))^{-1}(1 5)(2 3 4 5)^{-1}$ = (3 5)⁻¹(1 2 4)⁻¹(1 5)(2 3 4 5)⁻¹ = (5 3)(4 2 1)(1 5)(5 4 3 2) = (1 3)(2 4 5).

Powers of an element

Let g be an element of a group G. The positive **powers** of g are defined inductively:

$$g^1 = g$$
 and $g^{k+1} = g \cdot g^k$ for every integer $k \ge 1$.

The negative powers of g are defined as the positive powers of its inverse: $g^{-k} = (g^{-1})^k$ for every positive integer k. Finally, we set $g^0 = e$.

Theorem Let g be an element of a group G and $r, s \in \mathbb{Z}$. Then

(i)
$$g^r g^s = g^{r+s}$$
,
(ii) $(g^r)^s = g^{rs}$,
(iii) $(g^r)^{-1} = g^{-r}$.

Idea of the proof: First one proves the theorem for positive r, s by induction (induction on r for (i) and (iii), induction on s for (ii)). Then the general case is reduced to the case of positive r, s.

Order of an element

Let g be an element of a group G. We say that g has finite order if $g^n = e$ for some positive integer n.

If this is the case, then the smallest positive integer n with this property is called the **order** of g and denoted o(g).

Otherwise g is said to have the infinite order, $o(g) = \infty$.

Theorem If G is a finite group, then every element of G has finite order.

Proof: Let $g \in G$ and consider the list of powers: g, g^2, g^3, \ldots Since all elements in this list belong to the finite set G, there must be repetitions within the list. Assume that $g^r = g^s$ for some 0 < r < s. Then $g^r e = g^r g^{s-r}$ $\implies g^{s-r} = e$ due to the cancellation property. **Theorem 1** Let G be a group and $g \in G$ be an element of finite order n. Then $g^r = g^s$ if and only if $r \equiv s \mod n$. In particular, $g^r = e$ if and only if the order n divides r.

Theorem 2 Let G be a group and $g \in G$ be an element of infinite order. Then $g^r \neq g^s$ whenever $r \neq s$.

Theorem 3 Let g and h be two commuting elements of a group G: gh = hg. Then (i) the powers g^r and h^s commute for all $r, s \in \mathbb{Z}$, (ii) $(gh)^r = g^r h^r$ for all $r \in \mathbb{Z}$.

Theorem 4 Let G be a group and $g, h \in G$ be two commuting elements of finite order. Then gh also has a finite order. Moreover, o(gh) divides lcm(o(g), o(h)).

Subgroups

Definition. A group H is a called a **subgroup** of a group G if H is a subset of G and the group operation on H is obtained by restricting the group operation on G.

Theorem Let H be a nonempty subset of a group G and define an operation on H by restricting the group operation of G. Then the following are equivalent:

(i) H is a subgroup of G;

(ii) *H* is closed under the operation and under taking the inverse, that is, $g, h \in H \implies gh \in H$ and $g \in H \implies g^{-1} \in H$; (iii) $g, h \in H \implies gh^{-1} \in H$.

Corollary If *H* is a subgroup of *G* then (i) the identity element in *H* is the same as the identity element in *G*; (ii) for any $g \in H$ the inverse g^{-1} taken in *H* is the same as the inverse taken in *G*.

Examples of subgroups: • $(\mathbb{Z}, +)$ is a subgroup of $(\mathbb{R}, +)$.

• $(\mathbb{Q} \setminus \{0\}, \times)$ is a subgroup of $(\mathbb{R} \setminus \{0\}, \times)$.

• The alternating group A(n) is a subgroup of the symmetric group S(n).

• The special linear group $SL(n, \mathbb{R})$ is a subgroup of the general linear group $GL(n, \mathbb{R})$.

• Any group G is a subgroup of itself.

• If e is the identity element of a group G, then $\{e\}$ is the **trivial** subgroup of G.

• $(\mathbb{Z}_n, +)$ is not a subgroup of $(\mathbb{Z}, +)$ since \mathbb{Z}_n is not a subset of \mathbb{Z} (although every element of \mathbb{Z}_n is a subset of \mathbb{Z}).

• $(\mathbb{Z} \setminus \{0\}, \times)$ is not a subgroup of $(\mathbb{R} \setminus \{0\}, \times)$ since $(\mathbb{Z} \setminus \{0\}, \times)$ is not a group.