MATH 433 Applied Algebra Lecture 18: Cyclic groups. Cosets. Lagrange's theorem.

Groups

Definition. A **group** is a set G, together with a binary operation *, that satisfies the following axioms:

(G1: closure)

for all elements g and h of G, g * h is an element of G;

(G2: associativity)

(g * h) * k = g * (h * k) for all $g, h, k \in G$;

(G3: existence of identity)

there exists an element $e \in G$, called the **identity** (or **unit**) of G, such that e * g = g * e = g for all $g \in G$;

(G4: existence of inverse)

for every $g \in G$ there exists an element $h \in G$, called the **inverse** of g, such that g * h = h * g = e.

The group (G, *) is said to be **commutative** (or **Abelian**) if it satisfies an additional axiom:

(G5: commutativity) g * h = h * g for all $g, h \in G$.

Order of an element

Let g be an element of a group G. We say that g has **finite** order if $g^n = e$ for some positive integer n.

If this is the case, then the smallest positive integer n with this property is called the **order** of g and denoted o(g). Otherwise g is said to have the **infinite order**, $o(g) = \infty$.

Theorem 1 (i) If the order o(g) is finite, then $g^r = g^s$ if and only if $r \equiv s \mod o(g)$. In particular, $g^r = e$ if and only if o(g) divides r. (ii) If the order o(g) infinite, then $g^r \neq g^s$ whenever $r \neq s$.

Theorem 2 If G is a finite group, then every element of G has finite order.

Theorem 3 Let G be a group and $g, h \in G$ be two commuting elements of finite order. Then gh also has a finite order. Moreover, o(gh) divides lcm(o(g), o(h)).

Subgroups

Definition. A group H is a called a **subgroup** of a group G if H is a subset of G and the group operation on H is obtained by restricting the group operation on G.

Theorem Let H be a nonempty subset of a group G and define an operation on H by restricting the group operation of G. Then the following are equivalent:

(i) H is a subgroup of G;

(ii) *H* is closed under the operation and under taking the inverse, that is, $g, h \in H \implies gh \in H$ and $g \in H \implies g^{-1} \in H$; (iii) $g, h \in H \implies gh^{-1} \in H$.

Corollary If *H* is a subgroup of *G* then (i) the identity element in *H* is the same as the identity element in *G*; (ii) for any $g \in H$ the inverse g^{-1} taken in *H* is the same as the inverse taken in *G*.

Examples of subgroups: • $(\mathbb{Z}, +)$ is a subgroup of $(\mathbb{R}, +)$.

• $(\mathbb{Q} \setminus \{0\}, \times)$ is a subgroup of $(\mathbb{R} \setminus \{0\}, \times)$.

• The alternating group A(n) is a subgroup of the symmetric group S(n).

• The special linear group $SL(n, \mathbb{R})$ is a subgroup of the general linear group $GL(n, \mathbb{R})$.

• Any group G is a subgroup of itself.

• If e is the identity element of a group G, then $\{e\}$ is the **trivial** subgroup of G.

• $(\mathbb{Z}_n, +)$ is not a subgroup of $(\mathbb{Z}, +)$ since \mathbb{Z}_n is not a subset of \mathbb{Z} (although every element of \mathbb{Z}_n is a subset of \mathbb{Z}).

• $(\mathbb{Z} \setminus \{0\}, \times)$ is not a subgroup of $(\mathbb{R} \setminus \{0\}, \times)$ since $(\mathbb{Z} \setminus \{0\}, \times)$ is not a group.

Generators of a group

Theorem 1 Let H_1 and H_2 be subgroups of a group G. Then the intersection $H_1 \cap H_2$ is also a subgroup of G.

$$\begin{array}{lll} \textit{Proof:} & g,h \in H_1 \cap H_2 \implies g,h \in H_1 \text{ and } g,h \in H_2 \\ \implies gh^{-1} \in H_1 \text{ and } gh^{-1} \in H_2 \implies gh^{-1} \in H_1 \cap H_2. \end{array}$$

Theorem 2 Let H_{α} , $\alpha \in A$ be a collection of subgroups of a group G (where the index set A may be infinite). Then the intersection $\bigcap_{\alpha} H_{\alpha}$ is also a subgroup of G.

Let *S* be a nonempty subset of a group *G*. The **group generated by** *S*, denoted $\langle S \rangle$, is the smallest subgroup of *G* that contains the set *S*. The elements of the set *S* are called **generators** of the group $\langle S \rangle$.

Theorem 3 (i) The group $\langle S \rangle$ is the intersection of all subgroups of *G* that contain the set *S*.

(ii) The group $\langle S \rangle$ consists of all elements of the form $g_1g_2 \ldots g_k$, where each g_i is either a generator $s \in S$ or the inverse s^{-1} of a generator.

Cyclic groups

A **cyclic group** is a subgroup generated by a single element.

Cyclic group
$$\langle g \rangle = \{g^n : n \in \mathbb{Z}\}.$$

Any cyclic group is Abelian.

If g has finite order n, then $\langle g \rangle$ consists of n elements $g, g^2, \ldots, g^{n-1}, g^n = e$.

If g is of infinite order, then $\langle g \rangle$ is infinite.

Examples of cyclic groups: \mathbb{Z} , $3\mathbb{Z}$, \mathbb{Z}_5 , S(2), A(3). Examples of noncyclic groups: any non-Abelian group, \mathbb{Q} with addition, $\mathbb{Q} \setminus \{0\}$ with multiplication.

Cosets

Definition. Let H be a subgroup of a group G. A **coset** (or **left coset**) of the subgroup H in G is a set of the form $aH = \{ah : h \in H\}$, where $a \in G$. Similarly, a **right coset** of H in G is a set of the form $Ha = \{ha : h \in H\}$, where $a \in G$.

Theorem Let *H* be a subgroup of *G* and define a relation *R* on *G* by $aRb \iff a \in bH$. Then *R* is an equivalence relation.

Proof: We have *aRb* if and only if $b^{-1}a \in H$. **Reflexivity**: *aRa* since $a^{-1}a = e \in H$. **Symmetry**: *aRb* $\implies b^{-1}a \in H \implies a^{-1}b = (b^{-1}a)^{-1} \in H$ $\implies bRa$. **Transitivity**: *aRb* and *bRc* $\implies b^{-1}a, c^{-1}b \in H$ $\implies c^{-1}a = (c^{-1}b)(b^{-1}a) \in H \implies aRc$.

Corollary The cosets of the subgroup H in G form a partition of the set G.

Proof: Since R is an equivalence relation, its equivalence classes partition the set G. Clearly, the equivalence class of g is gH.

Examples of cosets

• $G = \mathbb{Z}$, $H = n\mathbb{Z}$. The coset of $a \in \mathbb{Z}$ is $[a]_n = a + n\mathbb{Z}$, the congruence class of

a modulo *n*.

• $G = \mathbb{R}^3$, H is the plane x + 2y - z = 0. H is a subgroup of G since it is a subspace. The coset of $(x_0, y_0, z_0) \in \mathbb{R}^3$ is the plane $x + 2y - z = x_0 + 2y_0 - z_0$ parallel to H.

• G = S(n), H = A(n).

There are only 2 cosets, the set of even permutations A(n) and the set of odd permutations $S(n) \setminus A(n)$.

• G is any group, H = G. There is only one coset, G.

• G is any group, $H = \{e\}$. Each element of G forms a separate coset.

Lagrange's theorem

The number of elements in a group G is called the **order** of G and denoted o(G). Given a subgroup H of G, the number of cosets of H in G is called the **index** of H in G and denoted [G : H].

Theorem (Lagrange) If *H* is a subgroup of a finite group *G*, then $o(G) = [G : H] \cdot o(H)$. In particular, the order of *H* divides the order of *G*.

Proof: For any $a \in G$ define a function $f : H \to aH$ by f(h) = ah. By definition of aH, this function is surjective. Also, it is injective due to the left cancellation property: $f(h_1) = f(h_2) \implies ah_1 = ah_2 \implies h_1 = h_2$. Therefore f is bijective. It follows that the number of elements in the coset aH is the same as the order of the subgroup H. Since the cosets of H in G partition the set G, the theorem follows.

Corollaries of Lagrange's theorem

Corollary 1 If G is a finite group, then the order of any element $g \in G$ divides the order of G.

Proof: The order of $g \in G$ is the order of the cyclic group $\langle g \rangle$, which is a subgroup of G.

Corollary 2 Any group *G* of prime order *p* is cyclic.

Proof: Take any element $g \in G$ different from e. Then $o(g) \neq 1$, hence o(g) = p, and this is also the order of the cyclic subgroup $\langle g \rangle$. It follows that $\langle g \rangle = G$.

Corollary 3 If G is a finite group, then $g^{o(G)} = 1$ for all $g \in G$.

Proof: $g^n = 1$ whenever *n* is a multiple of o(g).

Corollaries of Lagrange's theorem

Corollary 4 (Fermat's little theorem) If p is a prime number then $a^{p-1} \equiv 1 \mod p$ for any integer a that is not a multiple of p.

Proof: $a^{p-1} \equiv 1 \mod p$ means that $[a]_p^{p-1} = [1]_p$. *a* is not a multiple of *p* means that $[a]_p$ is in G_p , the multiplicative group of invertible congruence classes modulo *p*. It remains to notice that $o(G_p) = p - 1$.

Corollary 5 (Euler's theorem) If *n* is a positive integer then $a^{\phi(n)} \equiv 1 \mod n$ for any integer *a* coprime with *n*.

Proof: $a^{\phi(n)} \equiv 1 \mod n$ means that $[a]_n^{\phi(n)} = [1]_n$. *a* is coprime with *n* means that the congruence class $[a]_n$ is in G_n . It remains to notice that $o(G_n) = \phi(n)$.