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Lecture 18:
Cyclic groups.

Cosets.
Lagrange’s theorem.



Groups

Definition. A group is a set G , together with a binary
operation ∗, that satisfies the following axioms:

(G1: closure)
for all elements g and h of G , g ∗ h is an element of G ;

(G2: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ G ;

(G3: existence of identity)
there exists an element e ∈ G , called the identity (or unit)
of G , such that e ∗ g = g ∗ e = g for all g ∈ G ;

(G4: existence of inverse)
for every g ∈ G there exists an element h ∈ G , called the
inverse of g , such that g ∗ h = h ∗ g = e.

The group (G , ∗) is said to be commutative (or Abelian) if
it satisfies an additional axiom:

(G5: commutativity) g ∗ h = h ∗ g for all g , h ∈ G .



Order of an element

Let g be an element of a group G . We say that g has finite
order if gn = e for some positive integer n.

If this is the case, then the smallest positive integer n with this
property is called the order of g and denoted o(g).
Otherwise g is said to have the infinite order, o(g) = ∞.

Theorem 1 (i) If the order o(g) is finite, then g r = g s if
and only if r ≡ s mod o(g). In particular, g r = e if and
only if o(g) divides r .
(ii) If the order o(g) infinite, then g r 6= g s whenever r 6= s.

Theorem 2 If G is a finite group, then every element of G

has finite order.

Theorem 3 Let G be a group and g , h ∈ G be two
commuting elements of finite order. Then gh also has a
finite order. Moreover, o(gh) divides lcm

(

o(g), o(h)
)

.



Subgroups

Definition. A group H is a called a subgroup of a group G if
H is a subset of G and the group operation on H is obtained
by restricting the group operation on G .

Theorem Let H be a nonempty subset of a group G and
define an operation on H by restricting the group operation of
G . Then the following are equivalent:
(i) H is a subgroup of G ;
(ii) H is closed under the operation and under taking the
inverse, that is, g , h ∈ H =⇒ gh ∈ H and
g ∈ H =⇒ g−1 ∈ H ;
(iii) g , h ∈ H =⇒ gh−1 ∈ H .

Corollary If H is a subgroup of G then (i) the identity
element in H is the same as the identity element in G ;
(ii) for any g ∈ H the inverse g−1 taken in H is the same as
the inverse taken in G .



Examples of subgroups: • (Z, +) is a subgroup of (R, +).

• (Q \ {0},×) is a subgroup of (R \ {0},×).

• The alternating group A(n) is a subgroup of the symmetric
group S(n).

• The special linear group SL(n, R) is a subgroup of the
general linear group GL(n, R).

• Any group G is a subgroup of itself.

• If e is the identity element of a group G , then {e} is the
trivial subgroup of G .

Counterexamples: • (R \ {0},×) is not a subgroup of
(R, +) since the operations do not agree.

• (Zn, +) is not a subgroup of (Z, +) since Zn is not a
subset of Z (although every element of Zn is a subset of Z).

• (Z \ {0},×) is not a subgroup of (R \ {0},×) since
(Z \ {0},×) is not a group.



Generators of a group
Theorem 1 Let H1 and H2 be subgroups of a group G .
Then the intersection H1 ∩ H2 is also a subgroup of G .

Proof: g , h ∈ H1 ∩ H2 =⇒ g , h ∈ H1 and g , h ∈ H2

=⇒ gh−1 ∈ H1 and gh−1 ∈ H2 =⇒ gh−1 ∈ H1 ∩ H2.

Theorem 2 Let Hα, α ∈ A be a collection of subgroups of a
group G (where the index set A may be infinite). Then the
intersection

⋂

α Hα is also a subgroup of G .

Let S be a nonempty subset of a group G . The group
generated by S , denoted 〈S〉, is the smallest subgroup of G

that contains the set S . The elements of the set S are called
generators of the group 〈S〉.

Theorem 3 (i) The group 〈S〉 is the intersection of all
subgroups of G that contain the set S .
(ii) The group 〈S〉 consists of all elements of the form

g1g2 . . . gk , where each gi is either a generator s ∈ S or the
inverse s−1 of a generator.



Cyclic groups

A cyclic group is a subgroup generated by a single
element.

Cyclic group 〈g〉 = {gn : n ∈ Z}.

Any cyclic group is Abelian.

If g has finite order n, then 〈g〉 consists of n

elements g , g 2, . . . , gn−1, gn = e.

If g is of infinite order, then 〈g〉 is infinite.

Examples of cyclic groups: Z, 3Z, Z5, S(2), A(3).
Examples of noncyclic groups: any non-Abelian
group, Q with addition, Q \ {0} with multiplication.



Cosets

Definition. Let H be a subgroup of a group G . A coset
(or left coset) of the subgroup H in G is a set of the form
aH = {ah : h ∈ H}, where a ∈ G . Similarly, a right coset of H

in G is a set of the form Ha = {ha : h ∈ H}, where a ∈ G .

Theorem Let H be a subgroup of G and define a relation R on G

by aRb ⇐⇒ a ∈ bH. Then R is an equivalence relation.

Proof: We have aRb if and only if b−1a ∈ H.
Reflexivity: aRa since a−1a = e ∈ H.
Symmetry: aRb =⇒ b−1a ∈ H =⇒ a−1b = (b−1a)−1 ∈ H

=⇒ bRa. Transitivity: aRb and bRc =⇒ b−1a, c−1b ∈ H

=⇒ c−1a = (c−1b)(b−1a) ∈ H =⇒ aRc.

Corollary The cosets of the subgroup H in G form a partition of
the set G .

Proof: Since R is an equivalence relation, its equivalence classes
partition the set G . Clearly, the equivalence class of g is gH.



Examples of cosets

• G = Z, H = nZ.
The coset of a ∈ Z is [a]n = a + nZ, the congruence class of
a modulo n.

• G = R3, H is the plane x + 2y − z = 0.
H is a subgroup of G since it is a subspace. The coset of
(x0, y0, z0) ∈ R3 is the plane x + 2y − z = x0 + 2y0 − z0

parallel to H .

• G = S(n), H = A(n).
There are only 2 cosets, the set of even permutations A(n)
and the set of odd permutations S(n) \ A(n).

• G is any group, H = G .
There is only one coset, G .

• G is any group, H = {e}.
Each element of G forms a separate coset.



Lagrange’s theorem

The number of elements in a group G is called the order of G

and denoted o(G ). Given a subgroup H of G , the number of
cosets of H in G is called the index of H in G and denoted
[G : H].

Theorem (Lagrange) If H is a subgroup of a finite group
G , then o(G ) = [G : H] · o(H). In particular, the order of H

divides the order of G .

Proof: For any a ∈ G define a function f : H → aH by
f (h) = ah. By definition of aH , this function is surjective.
Also, it is injective due to the left cancellation property:
f (h1) = f (h2) =⇒ ah1 = ah2 =⇒ h1 = h2.
Therefore f is bijective. It follows that the number of
elements in the coset aH is the same as the order of the
subgroup H . Since the cosets of H in G partition the set G ,
the theorem follows.



Corollaries of Lagrange’s theorem

Corollary 1 If G is a finite group, then the order of any
element g ∈ G divides the order of G .

Proof: The order of g ∈ G is the order of the cyclic group
〈g〉, which is a subgroup of G .

Corollary 2 Any group G of prime order p is cyclic.

Proof: Take any element g ∈ G different from e. Then
o(g) 6= 1, hence o(g) = p, and this is also the order of the
cyclic subgroup 〈g〉. It follows that 〈g〉 = G .

Corollary 3 If G is a finite group, then g o(G) = 1 for all
g ∈ G .

Proof: gn = 1 whenever n is a multiple of o(g).



Corollaries of Lagrange’s theorem

Corollary 4 (Fermat’s little theorem) If p is a prime
number then ap−1 ≡ 1 mod p for any integer a that is not a
multiple of p.

Proof: ap−1 ≡ 1 mod p means that [a]p−1
p = [1]p.

a is not a multiple of p means that [a]p is in Gp, the
multiplicative group of invertible congruence classes modulo p.
It remains to notice that o(Gp) = p − 1.

Corollary 5 (Euler’s theorem) If n is a positive integer then
aφ(n) ≡ 1 mod n for any integer a coprime with n.

Proof: aφ(n) ≡ 1 mod n means that [a]
φ(n)
n = [1]n.

a is coprime with n means that the congruence class [a]n is in
Gn. It remains to notice that o(Gn) = φ(n).


