MATH 433

Applied Algebra Lecture 22:
Review for Exam 2.

Topics for Exam 2

- Permutations
- Cycles, transpositions
- Cycle decomposition of a permutation
- Order of a permutation
- Sign of a permutation
- Symmetric and alternating groups
- Abstract groups (definition and examples)
- Semigroups
- Rings, integral domains, zero-divisors
- Fields, characteristic of a field
- Vector spaces over a field
- Algebras over a field

Topics for Exam 2

- Order of an element in a group
- Subgroups, cyclic subgroups
- Cosets
- Lagrange's theorem
- Isomorphism of groups
- Binary codes, error detection and error correction
- Linear codes, generator matrix
- Coset leaders, coset decoding table
- Parity-check matrix, syndromes

What you are supposed to remember

- Definition of a permutation, a cycle, and a transposition
- Theorem on cycle decomposition
- Definition of the order of a permutation
- How to find the order for a product of disjoint cycles
- Definition of even and odd permutations
- Definition of the symmetric group $S(n)$ and the alternating group $A(n)$
- Definition of a group
- Definition of a ring
- Definition of a field

What you are supposed to remember

- Definition of the order of a group element
- Definition of a subgroup
- How to check whether a subset of a group is a subgroup
- Definition of a cyclic subgroup
- Definition of a coset
- Lagrange's theorem
- Definition of a binary code and a codeword
- Definition of a linear code and a generator matrix
- How to determine the number of detected and corrected errors
- How to correct errors using the minimum distance approach

Sample problems

Problem 1. Write the permutation
$\pi=\left(\begin{array}{ll}4 & 5\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)(123)$ as a product of disjoint cycles.
Problem 2. Find the order and the sign of the permutation $\sigma=(12)(3456)(1234)(56)$.

Problem 3. What is the largest possible order of an element of the alternating group $A(10)$?

Problem 4. Consider the operation $*$ defined on the set \mathbb{Z} of integers by $a * b=a+b-2$. Does this operation provide the integers with a group structure?

Sample problems

Problem 5. Let M be the set of all 2×2 matrices of the form $\left(\begin{array}{ll}n & k \\ 0 & n\end{array}\right)$, where n and k are rational numbers. Under the operations of matrix addition and multiplication, does this set form a ring? Does M form a field?

Problem 6. Let L be the set of the following 2×2 matrices with entries from the field \mathbb{Z}_{2} :

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
{[0]} & {[0]} \\
{[0]} & {[0]}
\end{array}\right), \quad B=\left(\begin{array}{ll}
{[1]} & {[0]} \\
{[0]} & {[1]}
\end{array}\right), \\
& C=\left(\begin{array}{ll}
{[1]} & {[1]} \\
{[1]} & {[0]}
\end{array}\right), \quad D=\left(\begin{array}{cc}
{[0]} & {[1]} \\
{[1]} & {[1]}
\end{array}\right) .
\end{aligned}
$$

Under the operations of matrix addition and multiplication, does this set form a ring? Does L form a field?

Sample problems

Problem 7. For any $\lambda \in \mathbb{Q}$ and any $v \in \mathbb{Z}$ let $\lambda \odot v=\lambda v$ if λv is an integer and $\lambda \odot v=v$ otherwise. Does this "selective scaling" make the additive Abelian group \mathbb{Z} into a vector space over the field \mathbb{Q} ?

Problem 8. Suppose H and K are subgroups of a group G. Is the union $H \cup K$ necessarily a subgroup of G ? Is the intersection $H \cap K$ necessarily a subgroup of G ?

Problem 9. Find all subgroups of the group (G_{15}, \times).
Problem 10. Determine which of the following groups of order 6 are isomorphic and which are not: $\mathbb{Z}_{6}, \mathbb{Z}_{3} \times \mathbb{Z}_{2}, S(3)$, and $D(3)$.

Sample problems

Problem 11. Let $f: \mathbf{B}^{3} \rightarrow \mathbf{B}^{7}$ be the coding function that sends each three-character word $a b c$ in the alphabet $\mathbf{B}=\{0,1\}$ to the codeword abcabcy, where y is the inverted parity bit of the word $a b c$ (i.e., $y=0$ if $a b c$ contains an odd number of 1 s and $y=1$ otherwise). How many errors will this code detect? correct? Is this code linear?

Problem 12. Let $f: \mathbf{B}^{3} \rightarrow \mathbf{B}^{6}$ be a coding function defined by the generator matrix

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right) .
$$

Suppose that a message encoded by this function is received with errors as 101101010101011111 . Correct errors and decode the received message.

Sample problems

Problem 13. Complete the following Cayley table of a group of order 9:

$*$	A	B	C	D	E	F	G	H	I
A	I								F
B		F						G	
C			H				E		
D				G		A			
E					E				
F				A		B			
G			E				A		
H		G						D	
I	F								C

Problem 1. Write the permutation $\pi=(456)(345)(123)$ as a product of disjoint cycles.

Keeping in mind that the composition is evaluated from the right to the left, we find that $\pi(1)=2, \pi(2)=5, \pi(5)=3$, and $\pi(3)=1$. Further, $\pi(4)=6$ and $\pi(6)=4$.
Thus $\pi=\left(\begin{array}{ll}1 & 2\end{array} 5\right.$ 3)(46).

Problem 2. Find the order and the sign of the permutation $\sigma=(12)(3456)(1234)(56)$.

First we find the cycle decomposition of the given permutation: $\sigma=(24)(35)$. It follows that the order of σ is 2 and that σ is an even permutation. Therefore the sign of σ is +1 .

Problem 3. What is the largest possible order of an element of the alternating group $A(10)$?

The order of a permutation π is $o(\pi)=\operatorname{lcm}\left(l_{1}, l_{2}, \ldots, I_{k}\right)$, where I_{1}, \ldots, l_{k} are lengths of cycles in the disjoint cycle decomposition of π.
The largest order for $\pi \in A(10)$, an even permutation of 10 elements, is 21 . It is attained when π is the product of disjoint cycles of lengths 7 and 3 , for example, $\pi=(1234567)(8910)$. One can check that in all other cases the order is at most 15 .

Remark. The largest order for $\pi \in S(10)$ is 30 , but it is attained on odd permutations, e.g.,
$\pi=(12345)(678)(910)$.

Problem 4. Consider the operation $*$ defined on the set \mathbb{Z} of integers by $a * b=a+b-2$. Does this operation provide the integers with a group structure?

We need to check 4 axioms.
Closure: $a, b \in \mathbb{Z} \Longrightarrow a * b=a+b-2 \in \mathbb{Z}$.
Associativity: for any $a, b, c \in \mathbb{Z}$, we have
$(a * b) * c=(a+b-2) * c=(a+b-2)+c-2=a+b+c-4$, $a *(b * c)=a *(b+c-2)=a+(b+c-2)-2=a+b+c-4$, hence $(a * b) * c=a *(b * c)$.
Existence of identity: equalities $a * e=e * a=a$ are equivalent to $e+a-2=a$. They hold for $e=2$.
Existence of inverse: equalities $a * b=b * a=e$ are equivalent to $b+a-2=e(=2)$. They hold for $b=4-a$.
Thus $(\mathbb{Z}, *)$ is a group.
Remark. The group $(\mathbb{Z}, *)$ is isomorphic to $(\mathbb{Z},+)$ via the isomorphism $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(a)=a-2$. Indeed, $f(a * b)=f(a)+f(b)$ for all $a, b \in \mathbb{Z}$.

Problem 5. Let M be the set of all 2×2 matrices of the form $\left(\begin{array}{ll}n & k \\ 0 & n\end{array}\right)$, where n and k are rational numbers. Under the operations of matrix addition and multiplication, does this set form a ring? Does M form a field?

The set M is closed under matrix addition, taking the negative, and matrix multiplication as

$$
\begin{aligned}
& \left(\begin{array}{ll}
n & k \\
0 & n
\end{array}\right)+\left(\begin{array}{cc}
n^{\prime} & k^{\prime} \\
0 & n^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
n+n^{\prime} & k+k^{\prime} \\
0 & n+n^{\prime}
\end{array}\right), \\
- & \left(\begin{array}{ll}
n & k \\
0 & n
\end{array}\right)=\left(\begin{array}{cc}
-n & -k \\
0 & -n
\end{array}\right), \\
& \left(\begin{array}{ll}
n & k \\
0 & n
\end{array}\right)\left(\begin{array}{cc}
n^{\prime} & k^{\prime} \\
0 & n^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
n n^{\prime} & n k^{\prime}+k n^{\prime} \\
0 & n n^{\prime}
\end{array}\right) .
\end{aligned}
$$

Also, the multiplication is commutative on M. The associativity and commutativity of the addition, the associativity of the multiplication, and the distributive law hold on M since they hold for all 2×2 matrices. Thus M is a commutative ring.

Problem 5. Let M be the set of all 2×2 matrices of the form $\left(\begin{array}{ll}n & k \\ 0 & n\end{array}\right)$, where n and k are rational numbers. Under the operations of matrix addition and multiplication, does this set form a ring? Does M form a field?

The ring M is not a field since it has zero-divisors (and zero-divisors do not admit multiplicative inverses).
For example, the matrix $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \in M$ is a zero-divisor as

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

Problem 6. Let L be the set of the following 2×2 matrices with entries from the field \mathbb{Z}_{2} :
$A=\left(\begin{array}{c}{[0]} \\ {[0]}\end{array}\right.$
$\left.\begin{array}{l}{[0]} \\ {[0]}\end{array}\right)$,
$B=\left(\begin{array}{l}{[1]} \\ {[0]}\end{array}\right.$
$\left.\begin{array}{l}{[0]} \\ {[1]}\end{array}\right)$,
$C=\left(\begin{array}{l}{[1]} \\ {[1]}\end{array}\right.$
$\left.\begin{array}{l}{[1]} \\ {[0]}\end{array}\right), \quad D=\left(\begin{array}{l}{[0]} \\ {[1]}\end{array}\right.$
$\left.\begin{array}{l}{[1]} \\ {[1]}\end{array}\right)$.

Under the operations of matrix addition and multiplication, does this set form a ring? Does L form a field?

First we build the addition and mutiplication tables for L (meanwhile checking that L is closed under both operations):

+	A	B	C	D
A	A	B	C	D
B	B	A	D	C
C	C	D	A	B
D	D	C	B	A

\times	A	B	C	D
A	A	A	A	A
B	A	B	C	D
C	A	C	D	B
D	A	D	B	C

Analyzing these tables, we find that both operations are commutative on L, A is the additive identity element, and B is the multiplicative identity element. Also, $B^{-1}=B, C^{-1}=D$, $D^{-1}=C$, and $-X=X$ for all $X \in L$. The associativity of addition and multiplication as well as the distributive law hold on L since they hold for all 2×2 matrices. Thus L is a field.

Problem 7. For any $\lambda \in \mathbb{Q}$ and any $v \in \mathbb{Z}$ let $\lambda \odot v=\lambda v$ if λv is an integer and $\lambda \odot v=v$ otherwise. Does this "selective scaling" make the additive Abelian group \mathbb{Z} into a vector space over the field \mathbb{Q} ?

The group $(\mathbb{Z},+)$ with the scalar multiplication \odot is not a vector space over \mathbb{Q}. One reason is that the axiom $\lambda \odot(\mu \odot v)=(\lambda \mu) \odot v$ does not hold.
A counterexample is $\lambda=2, \mu=1 / 2$, and $v=1$. Then $\lambda \odot(\mu \odot v)=\lambda \odot v=2$ while $(\lambda \mu) \odot v=1 \odot v=1$.

Problem 8. Suppose H and K are subgroups of a group G. Is the union $H \cup K$ necessarily a subgroup of G ? Is the intersection $H \cap K$ necessarily a subgroup of G ?

The union $H \cup K$ is a subgroup of G only if $H \subset K$ or $K \subset H$ (so that $H \cup K$ coincides with one of the subgroups H and K). Otherwise $H \cup K$ is not closed under the group operation.
The intersection $H \cap K$ of two subgroups is always a subgroup.

Problem 9. Find all subgroups of the group $\left(G_{15}, \times\right)$.

G_{15} is the multiplicative group of invertible congruence classes modulo 15. It has 8 elements:
[1], [2], [4], [7], [8], [11], [13], [14].

First we find the cyclic subgroups of G_{15}. These are $\{[1]\},\{[1],[4]\},\{[1],[11]\},\{[1],[14]\},\{[1],[2],[4],[8]\}$, and $\{[1],[4],[7],[13]\}$.
Any other subgroup is the union of several cyclic subgroups. By Lagrange's theorem, a subgroup of G_{15} can have the order $1,2,4$, or 8 . It follows that the only subgroup of G_{15} other than cyclic subgroups and G_{15} itself might be the union of three cyclic subgroups of order 2: $\{[1],[4],[11],[14]\}$. One can check that this is indeed a subgroup.

Problem 10. Determine which of the following groups of order 6 are isomorphic and which are not: $\mathbb{Z}_{6}, \mathbb{Z}_{3} \times \mathbb{Z}_{2}, S(3)$, and $D(3)$.
$\mathbb{Z}_{3} \times \mathbb{Z}_{2}$ is an additive group, where the addition is defined by $(g, h)+\left(g^{\prime}, h^{\prime}\right)=\left(g+g^{\prime}, h+h^{\prime}\right)$. It is easy to check that the element $\left([1]_{3},[1]_{2}\right)$ has order 6 . Therefore it generates the entire group so that $\mathbb{Z}_{3} \times \mathbb{Z}_{2}$ is cyclic. Hence it is isomorphic to \mathbb{Z}_{6}.
$D(3)$ is a dihedral group, the group of symmetries of an equilateral triangle. Any symmetry permutes vertices of the triangle. Once we label the vertices as 1,2 , and 3 , each symmetry from $D(3)$ is assigned a permutation from the symmetric group $S(3)$. This correspondence is actually an isomorphism.
Neither of the groups \mathbb{Z}_{6} and $\mathbb{Z}_{3} \times \mathbb{Z}_{2}$ is isomorphic to $S(3)$ or $D(3)$ since the first two groups are commutative while the other two are not.

Problem 11. Let $f: \mathbf{B}^{3} \rightarrow \mathbf{B}^{7}$ be the coding function that sends each three-character word $a b c$ in the alphabet
$\mathbf{B}=\{0,1\}$ to the codeword $a b c a b c y$, where y is the inverted parity bit of the word $a b c$ (i.e., $y=0$ if $a b c$ contains an odd number of 1 s and $y=1$ otherwise). How many errors will this code detect? correct? Is this code linear?

First we list all 8 codewords for the given code:

$$
\begin{array}{lll}
0000001, & 0010010, & 0100100, \\
1001000, & 1011011, & 1101101, \\
1111110 .
\end{array}
$$

Then we determine the minimum distance between distinct codewords. By inspection, it is 3 . Therefore the code allows to detect 2 errors and to correct 1 error.

Since the zero word is not a codeword, it follows that the code is not linear.

Problem 12. Let $f: \mathbf{B}^{3} \rightarrow \mathbf{B}^{6}$ be a coding function defined by the generator matrix

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

Suppose that a message encoded by this function is received with errors as 101101010101011111. Correct errors and decode the received message.

The coding function is given by $f(w)=w G$, where G is the generator matrix and w is regarded as a row vector. The 8 codewords are linear combinations of rows of the generator matrix:

$$
\begin{array}{llll}
000000, & 001011, & 010110, & 011101, \\
100101, & 101110, & 110011, & 111000 .
\end{array}
$$

Every received word is corrected to the closest codeword. The corrected message is 100101011101011101 . Since the code is systematic, decoding consists of truncating the codewords to 3 digits: 100011011 .

Problem 13. Complete the following Cayley table of a group of order 9:

$*$	A	B	C	D	E	F	G	H	I
A	I								F
B		F						G	
C			H				E		
D				G		A			
E					E				
F				A		B			
G			E				A		
H		G						D	
I	F								C

First we observe that E is the identity element as $E^{2}=E$. Next we observe that $A^{2}=I$ and $A^{3}=A I=F$ so that the order of A is greater than 3. Since the order of the group is 9 , it follows from Lagrange's theorem that the group is cyclic and A is a generator. Further, $B=F^{2}=A^{6}, C=I^{2}=A^{4}, H=C^{2}=A^{8}, D=H^{2}=A^{16}=A^{7}$, $G=D^{2}=A^{14}=A^{5}$. Also, $E=A^{0}$. Now that every element of the group is represented as a power of A, completing the table is a routine task. For example, $B C=A^{6} A^{4}=A^{10}=A$.

