MATH 433
 Applied Algebra

Lecture 1:
 Division of integers. Greatest common divisor.

Integer numbers

Positive integers: $\mathbb{P}=\{1,2,3, \ldots\}$
Natural numbers: $\mathbb{N}=\{0,1,2,3, \ldots\}$
Integers: $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
Arithmetic operations: addition, subtraction, multiplication, and division.
Addition and multiplication are well defined for the natural numbers \mathbb{N}. Subtraction is well defined for the integers \mathbb{Z} (only partially defined on \mathbb{N}).
Division by a nonzero number is well defined on the set of rational numbers \mathbb{Q} (only partially defined on \mathbb{Z} and \mathbb{N}).

Division of integer numbers

Let a and b be integers and $a \neq 0$. We say that a divides b or that b is divisible by a if $b=a q$ for some integer q. The integer q is called the quotient of b by a.
Notation: $a \mid b(a$ divides $b)$
$a \nmid b$ (a does not divide b)
Let a and b be integers and $a>0$. Suppose that $b=a q+r$ for some integers q and r such that $0 \leq r<a$. Then r is the remainder and q is the (partial) quotient of b by a.
Note that $a \mid b$ means that the remainder is 0 .

Ordering of integers

Integer numbers are ordered: for any $a, b \in \mathbb{Z}$ we have either $a<b$ or $b<a$ or $a=b$.
One says that an integer c lies between integers a and b if $a<c<b$ or $b<c<a$.

Well-ordering principle: any nonempty set of natural numbers has the smallest element.

As a consequence, any decreasing sequence of natural numbers is finite.

Remark. The well-ordering principle does not hold for all integers (there is no smallest integer).

Division theorem

Theorem Let a and b be integers and $a>0$. Then the remainder and the quotient of b by a are well-defined. That is, $b=a q+r$ for some integers q and r such that $0 \leq r<a$.

Proof: First consider the case $b \geq 0$.
Let $R=\{x \in \mathbb{N}: x=b-a y$ for some $y \in \mathbb{Z}\}$.
The set R is not empty as $b=b-a 0 \in R$. Hence it has the smallest element r. We have $r=b-a q$ for some $q \in \mathbb{Z}$.
Consider the number $r-a$. Since $r-a<r$, it is not contained in R. But $r-a=(b-a q)-a=b-a(q+1)$. It follows that $r-a$ is not natural, i.e., $r-a<0$.
Thus $b=a q+r$, where q and r are integers and $0 \leq r<a$.
Now consider the case $b<0$. In this case $-b>0$.
By the above $-b=a q+r$ for some integers q and r such that $0 \leq r<a$. If $r=0$ then $b=-a q=a(-q)+0$. If $0<r<a$ then $b=-a q-r=a(-q-1)+(a-r)$.

Greatest common divisor

Given two natural numbers a and b, the greatest common divisor of a and b is the largest natural number that divides both a and b.

Notation: $\operatorname{gcd}(a, b)$ or simply (a, b).
Example 1. $a=12, b=18$.
Natural divisors of 12 are $1,2,3,4,6$, and 12 .
Natural divisors of 18 are 1,2,3,6,9, and 18 .
Common divisors are $1,2,3$, and 6 .
Thus $\operatorname{gcd}(12,18)=6$.
Notice that $\operatorname{gcd}(12,18)$ is divisible by any other common divisor of 12 and 18.

Example 2. $\quad a=1356, b=744 . \quad \operatorname{gcd}(a, b)=?$

Euclidean algorithm

Lemma 1 If a divides b then $\operatorname{gcd}(a, b)=a$.
Lemma 2 If $a \nmid b$ and r is the remainder of b by a, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(r, a)$.

Example 2. $a=1356, b=744 . \operatorname{gcd}(a, b)=$?
First we divide 1356 by 744 : $\quad 1356=744 \cdot 1+612$.
Then divide 744 by 612: $744=612 \cdot 1+132$.
Then divide 612 by 132: $\quad 612=132 \cdot 4+84$.
Then divide 132 by $84: \quad 132=84 \cdot 1+48$.
Then divide 84 by 48: $84=48 \cdot 1+36$.
Then divide 48 by 36: $48=36 \cdot 1+12$.
Then divide 36 by 12: $36=12 \cdot 3$.
Thus $\operatorname{gcd}(1356,744)=\operatorname{gcd}(744,612)$
$=\operatorname{gcd}(612,132)=\operatorname{gcd}(132,84)=\operatorname{gcd}(84,48)$
$=\operatorname{gcd}(48,36)=\operatorname{gcd}(36,12)=12$.

