MATH 433

Applied Algebra

Euclidean algorithm.

Lecture 2:

Division of integer numbers

Let a and b be integers and a > 0. Suppose that b = aq + r for some integers q and r such that $0 \le r < a$. Then r is the **remainder** and q is the **quotient** of b by a.

Theorem 1 Let a and b be integers and a > 0. Then the remainder and the quotient of b by a are well-defined.

Division of integer numbers

Theorem 2 Let a and b be integers and a > 0. Then the remainder and the quotient of b by a are uniquely determined.

Proof: Suppose that $b = aq_1 + r_1$ and $b = aq_2 + r_2$, where q_1, r_1, q_2, r_2 are integers and $0 \le r_1, r_2 < a$. We need to show that $q_1 = q_2$ and $r_1 = r_2$.

We have $aq_1+r_1=aq_2+r_2$, which implies that $r_1-r_2=aq_2-aq_1=a\bigl(q_2-q_1\bigr)$. Adding inequalities $0\leq r_1< a$ and $-a<-r_2\leq 0$, we obtain $-a< r_1-r_2< a$. Consequently, $-1< \bigl(r_1-r_2\bigr)/a<1$. On the other hand, $\bigl(r_1-r_2\bigr)/a=q_2-q_1$ is an integer. Therefore $\bigl(r_1-r_2\bigr)/a=q_2-q_1=0$ so that $q_1=q_2$ and $r_1=r_2$.

Greatest common divisor

Given two natural numbers a and b, the **greatest common divisor** gcd(a, b) of a and b is the largest natural number that divides both a and b.

Lemma 1 If a divides b then gcd(a, b) = a.

Lemma 2 If $a \nmid b$ and r is the remainder of b by a, then gcd(a, b) = gcd(r, a).

Proof: We have b=aq+r, where q is an integer. Let d|a and d|b. Then a=dn, b=dm for some $n,m\in\mathbb{Z}$ $\implies r=b-aq=dm-dnq=d(m-nq) \implies d$ divides r. Conversely, let d|r and d|a. Then r=dk, a=dn for some $k,n\in\mathbb{Z} \implies b=dnq+dk=d(nq+k) \implies d$ divides b. Thus the pairs a,b and r,a have the same common divisors. In particular, $\gcd(a,b)=\gcd(r,a)$.

Euclidean algorithm

Theorem Given $a, b \in \mathbb{Z}$, 0 < a < b, there is a decreasing sequence of positive integers $r_1 > r_2 > \cdots > r_k$ such that $r_1 = b$, $r_2 = a$, r_i is the remainder of r_{i-2} by r_{i-1} for $3 \le i \le k$, and r_k divides r_{k-1} . Then $\gcd(a, b) = r_k$.

Example.
$$a = 1356$$
, $b = 744$. $gcd(a, b) = ?$

We obtain

$$1356 = 744 \cdot 1 + 612,$$

 $744 = 612 \cdot 1 + 132,$
 $612 = 132 \cdot 4 + 84,$
 $132 = 84 \cdot 1 + 48,$
 $84 = 48 \cdot 1 + 36,$
 $48 = 36 \cdot 1 + 12,$
 $36 = 12 \cdot 3.$

Thus gcd(1356, 744) = 12.

Theorem Let a and b be positive integers. Then $\gcd(a,b)$ is the smallest positive number represented as $na+mb,\ m,n\in\mathbb{Z}$ (that is, as an **integral linear combination** of a and b).

Proof: Let $L = \{x \in \mathbb{P} : x = na + mb \text{ for some } m, n \in \mathbb{Z}\}$. The set L is not empty as $b = 0a + 1b \in L$. Hence it has the smallest element c. We have c = na + mb, $m, n \in \mathbb{Z}$.

Consider the remainder r of a by c. Then r = a - cq, where q is the quotient of a by c. It follows that r = a - (na + mb)q = (1 - nq)a + (-mq)b.

Since r < c, it cannot belong to the set L. Therefore r = 0. That is, c divides a. Similarly, one can prove that c divides b.

Let d > 0 be another common divisor of a and b.

Then a = dk and b = dl for some $k, l \in \mathbb{Z}$ $\implies c = na + mb = ndk + mdl = d(nk + ml)$ $\implies d$ divides $c \implies d < c$.

Proposition gcd(a, b) is divisible by any other common divisor of a and b.

Problem. Find an integer solution of the equation 1356m + 744n = 12.

Let us consider a partitioned matrix $\begin{pmatrix} 1 & 0 & 1356 \\ 0 & 1 & 744 \end{pmatrix}$.

This is the augmented matrix of the system $\begin{cases} x = 1356, \\ y = 744. \end{cases}$

We are going to apply elementary row operations to this matrix until we get 12 in the rightmost column.

$$\begin{pmatrix} 1 & 0 & 1356 \\ 0 & 1 & 744 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 612 \\ 0 & 1 & 744 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 612 \\ -1 & 2 & 132 \end{pmatrix}$$

Thus m = -17, n = 31 is a solution.