## MATH 433

Applied Algebra
Lecture 3:
Mathematical induction.

## Mathematical induction

Well-ordering principle: any nonempty set of positive integers has the smallest element. (Equivalently, any decreasing sequence of positive integers is finite.)
Induction principle: Let $P(n)$ be an assertion depending on the positive integer variable $n$. Suppose that

- $P(1)$ holds,
- whenever $P(k)$ holds, so does $P(k+1)$. Then $P(n)$ holds for all positive integers $n$.

Remarks. The assertion $P(1)$ is called the basis of induction. The implication $P(k) \Longrightarrow P(k+1)$ is called the induction step.
Examples of assertions $P(n)$ :
(a) $1+2+\cdots+n=n(n+1) / 2$,
(b) $n(n+1)(n+2)$ is divisible by 6 ,
(c) $n=2 p+3 q$ for some $p, q \in \mathbb{Z}$.

Theorem The well-ordering principle implies the induction principle.

Proof: Let $P(n)$ be an assertion depending on the positive integer variable $n$ such that $P(1)$ holds and $P(k)$ implies $P(k+1)$ for any integer $k>0$.
Consider the set $S=\{n \in \mathbb{P}: P(n)$ does not hold $\}$. Assume that $S$ is not empty. By the well-ordering principle, the set $S$ has the smallest element $m$. Since $P(1)$ holds, $m \neq 1$ so that $m-1>0$. Clearly, $m-1 \notin S$, therefore $P(m-1)$ holds. But $P(m-1) \Longrightarrow P(m)$ so that $P(m)$ holds as well.
The contradiction means that the assumption was wrong. Thus the set $S$ is empty.

Theorem $1+2+\cdots+n=\frac{n(n+1)}{2}$.
Proof: Let us use the induction principle (on the variable $n$ ).
Basis of induction: check the formula for $n=1$. In this case, $1=1(1+1) / 2$, which is true.
Induction step: assume that the formula is true for $n=m$ and derive it for $n=m+1$.
Inductive assumption: $1+2+\cdots+m=m(m+1) / 2$.
Then

$$
\begin{gathered}
1+2+\cdots+m+(m+1)=\frac{m(m+1)}{2}+(m+1) \\
=(m+1)\left(\frac{m}{2}+1\right)=\frac{(m+1)(m+2)}{2} .
\end{gathered}
$$

By the principle of mathematical induction, the formula holds for all $n \in \mathbb{P}$.

Strong induction principle: Let $P(n)$ be an assertion depending on a positive integer variable $n$. Suppose that $P(n)$ holds whenever $P(k)$ holds for all $k<n$. Then $P(n)$ holds for all positive integers $n$.

For $n=1$, this means that $P(1)$ holds unconditionally.
For $n=2$, this means that $P(1)$ implies $P(2)$.
For $n=3$, this means that $P(1)$ and $P(2)$ imply $P(3)$.
And so on...

## Strong induction

Theorem Let $P(n)$ be an assertion depending on a positive integer variable $n$. Suppose that $P(n)$ holds whenever $P(k)$ holds for all $k<n$. Then $P(n)$ holds for all $n \in \mathbb{P}$.

Proof of the theorem: For any $n \in \mathbb{P}$ we formulate new assertion $Q(n)=$ " $P(k)$ holds for any positive integer $k \leq n$ ". We are going to prove $Q(n)$ by (usual) induction on $n$.
First of all, $Q(1)$ holds since it is equivalent to $P(1)$. Now assume that $Q(n)$ holds for some $n \in \mathbb{P}$. By hypothesis of the theorem, $Q(n)$ implies $P(n+1)$. Moreover, $Q(n+1)$ holds if and only if both $Q(n)$ and $P(n+1)$ hold. Therefore $Q(n)$ implies $Q(n+1)$ for all $n \in \mathbb{P}$. By the principle of mathematical induction, $Q(n)$ holds for all $n \in \mathbb{P}$. It remains to notice that $Q(n)$ implies $P(n)$ for all $n \in \mathbb{P}$.

## Well-ordering and induction

Principle of well-ordering:
The set $\mathbb{P}$ is well-ordered, that is, any nonempty subset of $\mathbb{P}$ has a least element.
Principle of mathematical induction:
Let $P(n)$ be an assertion depending on a variable $n \in \mathbb{P}$.
Suppose that $P(1)$ holds and $P(k)$ implies $P(k+1)$ for any
$k \in \mathbb{P}$. Then $P(n)$ holds for all $n \in \mathbb{P}$.
Induction with a different base:
Let $P(n)$ be an assertion depending on an integer variable $n$. Suppose that $P\left(n_{0}\right)$ holds for some $n_{0} \in \mathbb{Z}$ and $P(k)$ implies $P(k+1)$ for any $k \geq n_{0}$. Then $P(n)$ holds for all $n \geq n_{0}$.

Strong induction: Let $P(n)$ be an assertion depending on a variable $n \in \mathbb{P}$. Suppose that $P(n)$ holds whenever $P(k)$ holds for all $k<n$. Then $P(n)$ holds for all $n \in \mathbb{P}$.

## Inductive definition

The principle of mathematical induction allows to define mathematical objects inductively (that is, recursively).

Examples of inductive definitions:

- Power $a^{n}$ of a number

Given a real number $a$, we let $a^{0}=1$ and $a^{n}=a^{n-1} a$ for any $n \in \mathbb{P}$.

- Factorial $n$ !

We let $0!=1$ and $n!=(n-1)!\cdot n$ for any $n \in \mathbb{P}$.

- Fibonacci numbers $F_{1}, F_{2}, \ldots$

We let $F_{1}=F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for any $n \geq 3$.

Problem. Let $\left\{F_{n}\right\}$ be the Fibonacci numbers:
$F_{1}=F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for any $n \geq 3$. Prove that $(1.5)^{n-2} \leq F_{n} \leq 2^{n-1}$ for all $n \geq 1$.

Let us use the strong induction on $n$. In the case $n=1$, we check the inequalities directly: $(1.5)^{1-2} \leq F_{1}=1 \leq 2^{1-1}$. In the case $n=2$, we also check them directly:
$(1.5)^{2-2} \leq F_{2}=1 \leq 2^{2-1}$.
Now consider an integer $m \geq 3$ and assume that the inequalities hold for all $n<m$. In particular, they hold for $n=m-1$ and $n=m-2$. Then

$$
\begin{aligned}
F_{m} & =F_{m-1}+F_{m-2} \leq 2^{(m-1)-1}+2^{(m-2)-1}=2^{m-2}+2^{m-3} \\
& =2^{m-1}(1 / 2+1 / 4)<2^{m-1}, \\
F_{m} & =F_{m-1}+F_{m-2} \geq(1.5)^{(m-1)-2}+(1.5)^{(m-2)-2} \\
& =(1.5)^{m-3}+(1.5)^{m-4}=(1.5)^{m-2}(2 / 3+4 / 9)>(1.5)^{m-2} .
\end{aligned}
$$

The induction is complete.

