MATH 433 Applied Algebra

Lecture 3:

Mathematical induction.

Mathematical induction

Well-ordering principle: any nonempty set of positive integers has the smallest element. (Equivalently, any decreasing sequence of positive integers is finite.)

Induction principle: Let P(n) be an assertion depending on the positive integer variable n. Suppose that

- *P*(1) holds,
- whenever P(k) holds, so does P(k+1).

Then P(n) holds for all positive integers n.

Remarks. The assertion P(1) is called the **basis of induction**. The implication $P(k) \Longrightarrow P(k+1)$ is called the **induction step**.

Examples of assertions P(n):

- (a) $1 + 2 + \cdots + n = n(n+1)/2$,
- (b) n(n+1)(n+2) is divisible by 6,
- (c) n = 2p + 3q for some $p, q \in \mathbb{Z}$.

Theorem The well-ordering principle implies the induction principle.

Proof: Let P(n) be an assertion depending on the positive integer variable n such that P(1) holds and P(k) implies P(k+1) for any integer k>0.

Consider the set $S = \{n \in \mathbb{P} : P(n) \text{ does not hold}\}$. Assume that S is not empty. By the well-ordering principle, the set S has the smallest element m. Since P(1) holds $m \neq 1$ so that m = 1 > 0

Since P(1) holds, $m \neq 1$ so that m-1 > 0. Clearly, $m-1 \notin S$, therefore P(m-1) holds. But $P(m-1) \implies P(m)$ so that P(m) holds as well.

The contradiction means that the assumption was wrong. Thus the set S is empty.

Theorem
$$1 + 2 + \cdots + n = \frac{n(n+1)}{2}$$
.

Proof: Let us use the induction principle (on the variable n).

Basis of induction: check the formula for n = 1.

In this case, 1 = 1(1+1)/2, which is true.

Induction step: assume that the formula is true for n = m and derive it for n = m + 1.

Inductive assumption: $1 + 2 + \cdots + m = m(m+1)/2$. Then

$$1+2+\cdots+m+(m+1)=\frac{m(m+1)}{2}+(m+1)$$
$$=(m+1)\left(\frac{m}{2}+1\right)=\frac{(m+1)(m+2)}{2}.$$

By the principle of mathematical induction, the formula holds for all $n \in \mathbb{P}$.

Strong induction principle: Let P(n) be an assertion depending on a positive integer variable n. Suppose that P(n) holds whenever P(k) holds for all k < n. Then P(n) holds for all positive integers n.

For n = 1, this means that P(1) holds unconditionally.

For n = 2, this means that P(1) implies P(2). For n = 3, this means that P(1) and P(2) imply P(3).

And so on...

Strong induction

Theorem Let P(n) be an assertion depending on a positive integer variable n. Suppose that P(n) holds whenever P(k) holds for all k < n. Then P(n) holds for all $n \in \mathbb{P}$.

It remains to notice that Q(n) implies P(n) for all $n \in \mathbb{P}$.

Well-ordering and induction

Principle of well-ordering:

The set \mathbb{P} is well-ordered, that is, any nonempty subset of \mathbb{P} has a least element.

Principle of mathematical induction:

Let P(n) be an assertion depending on a variable $n \in \mathbb{P}$. Suppose that P(1) holds and P(k) implies P(k+1) for any $k \in \mathbb{P}$. Then P(n) holds for all $n \in \mathbb{P}$.

Induction with a different base:

Let P(n) be an assertion depending on an integer variable n. Suppose that $P(n_0)$ holds for some $n_0 \in \mathbb{Z}$ and P(k) implies P(k+1) for any $k \ge n_0$. Then P(n) holds for all $n \ge n_0$.

Strong induction: Let P(n) be an assertion depending on a variable $n \in \mathbb{P}$. Suppose that P(n) holds whenever P(k) holds for all k < n. Then P(n) holds for all $n \in \mathbb{P}$.

Inductive definition

The principle of mathematical induction allows to define mathematical objects inductively (that is, recursively).

Examples of inductive definitions:

- Power a^n of a number
- Given a real number a, we let $a^0 = 1$ and $a^n = a^{n-1}a$ for any $n \in \mathbb{P}$.
 - Factorial *n*!
- We let 0! = 1 and $n! = (n-1)! \cdot n$ for any $n \in \mathbb{P}$.
 - Fibonacci numbers F_1, F_2, \dots
- We let $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for any $n \ge 3$.

Problem. Let $\{F_n\}$ be the Fibonacci numbers:

 $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for any $n \ge 3$. Prove that $(1.5)^{n-2} < F_n < 2^{n-1}$ for all n > 1.

Let us use the strong induction on n. In the case n=1, we check the inequalities directly: $(1.5)^{1-2} \le F_1 = 1 \le 2^{1-1}$. In the case n=2, we also check them directly: $(1.5)^{2-2} < F_2 = 1 < 2^{2-1}$.

Now consider an integer $m \ge 3$ and assume that the inequalities hold for all n < m. In particular, they hold for n = m - 1 and n = m - 2. Then

$$F_m = F_{m-1} + F_{m-2} \le 2^{(m-1)-1} + 2^{(m-2)-1} = 2^{m-2} + 2^{m-3} = 2^{m-1}(1/2 + 1/4) < 2^{m-1},$$

$$F_m = F_{m-1} + F_{m-2} \ge (1.5)^{(m-1)-2} + (1.5)^{(m-2)-2}$$

= $(1.5)^{m-3} + (1.5)^{m-4} = (1.5)^{m-2} (2/3 + 4/9) > (1.5)^{m-2}$.

The induction is complete.