MATH 433
 Applied Algebra

Lecture 4:
More on greatest common divisor. Prime numbers.
Unique factorisation theorem.

Greatest common divisor

Given positive integers $a_{1}, a_{2}, \ldots, a_{n}$, the greatest common divisor $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the largest positive integer that divides $a_{1}, a_{2}, \ldots, a_{n}$.

Theorem (i) $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the smallest positive integer represented as an integral linear combination of $a_{1}, a_{2}, \ldots, a_{n}$.
(ii) $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is divisible by any other common divisor of $a_{1}, a_{2}, \ldots, a_{n}$.
Remark. The theorem can be proved in the same way as in the case $n=2$ (see Lecture 2). Another approach is by induction on n using the fact that $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\operatorname{gcd}\left(a_{1}, \operatorname{gcd}\left(a_{2}, \ldots, a_{n}\right)\right)$.

Prime numbers

A positive integer p is prime if it has exactly two positive divisors, namely, 1 and p.
Examples. 2, 3, 5, 7, 29, 41, 101.
A positive integer n is composite if it a product of two strictly smaller positive integers.
Examples. $6=2 \cdot 3,16=4 \cdot 4,125=5 \cdot 25$.
Any positive integer is either prime or composite or 1. Prime factorisation of a positive integer $n \geq 2$ is a decomposition of n into a product of primes.
Examples. - $120=12 \cdot 10=(2 \cdot 6) \cdot(2 \cdot 5)$
$=(2 \cdot(2 \cdot 3)) \cdot(2 \cdot 5)=2^{3} \cdot 3 \cdot 5$.

- $144=12^{2}=\left(2^{2} \cdot 3\right)^{2}=2^{4} \cdot 3^{2}$.

Sieve of Eratosthenes

The sieve of Eratosthenes is a method to find all primes from 2 to n :
(1) Write down all integers from 2 to n.
(2) Select the smallest integer k that is not selected or crossed out yet.
(3) Cross out all multiples of k.
(4) If not all numbers are selected or crossed out, return to step (2).

The prime numbers are those selected in the process.

Unique factorisation theorem

Theorem Any positive integer $n \geq 2$ admits a prime factorisation. This factorisation is unique up to rearranging the factors.

Corollary There are infinitely many prime numbers. Idea of the proof: Let $p_{1}, p_{2}, \ldots, p_{n}$ be the first n primes. Consider the number $N=p_{1} p_{2} \cdots p_{n}+1$. This number must have a prime divisor different from $p_{1}, p_{2}, \ldots, p_{n}$.

Problem. Suppose m is a positive integer such that

$$
\begin{aligned}
& m=2^{4} p_{1} p_{2} p_{3}, \\
& m+100=5 q_{1} q_{2} q_{3}, \\
& m+200=23 r_{1} r_{2} r_{3} r_{4},
\end{aligned}
$$

where p_{i}, q_{j}, r_{k} are prime numbers and, moreover, $p_{i} \neq 2$, $q_{j} \neq 5, r_{k} \neq 23$. Find m.

The prime decomposition of 100 is $2^{2} \cdot 5^{2}$. Since the numbers $m+100$ and 100 are divisible by 5 , so are their difference m and their sum $m+200$.
The prime decomposition of 200 is $2^{3} \cdot 5^{2}$. Since the number m is divisible by $2^{4}=16$, it follows that $m+100$ is divisible by $2^{2}=4$ while $m+200$ is divisible by $2^{3}=8$.
By the above the prime decomposition of $m+200$ contains $2^{3} \cdot 5 \cdot 23$. As there are only 5 factors in this decomposition, the number $m+200$ is exactly $2^{3} \cdot 5 \cdot 23=920$. Then $m+100=820=2^{2} \cdot 5 \cdot 41$ and $m=720=2^{4} \cdot 3^{2} \cdot 5$.

Unique prime factorisation

Theorem Any positive integer $n \geq 2$ admits a prime factorisation. This factorisation is unique up to rearranging the factors.

Ideas of the proof: The existence is proved by strong induction on n. It is based on a simple fact: if $p_{1} p_{2} \ldots p_{s}$ is a prime factorisation of k and $q_{1} q_{2} \ldots q_{t}$ is a prime factorisation of m, then $p_{1} p_{2} \ldots p_{s} q_{1} q_{2} \ldots q_{t}$ is a prime factorisation of $k m$.

The uniqueness is proved by (normal) induction on the number of prime factors. It is based on a (not so simple) fact: if a prime number p divides a product of primes $q_{1} q_{2} \ldots q_{t}$ then one of the primes q_{1}, \ldots, q_{t} coincides with p.

Coprime numbers

Positive integers a and b are relatively prime (or coprime) if $\operatorname{gcd}(a, b)=1$.

Theorem Suppose that a and b are coprime integers. Then
(i) $a \mid b c$ implies $a \mid c$;
(ii) $a \mid c$ and $b \mid c$ imply $a b \mid c$.

Idea of the proof: Since $\operatorname{gcd}(a, b)=1$, there are integers m and n such that $m a+n b=1$. Then $c=m a c+n b c$.

Corollary 1 If a prime number p divides the product $a_{1} a_{2} \ldots a_{n}$, then p divides one of the integers a_{1}, \ldots, a_{n}.

Corollary 2 If an integer a is divisible by pairwise coprime integers $b_{1}, b_{2}, \ldots, b_{n}$, then a is divisible by the product $b_{1} b_{2} \ldots b_{n}$.

Let $a=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{k}^{n_{k}}$ and $b=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{k}^{m_{k}}$, where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes and n_{i}, m_{i} are nonnegative integers.

Theorem (i) $a b=p_{1}^{n_{1}+m_{1}} p_{2}^{n_{2}+m_{2}} \ldots p_{k}^{n_{k}+m_{k}}$.
(ii) a divides b if and only if $n_{i} \leq m_{i}$ for $i=1,2, \ldots, k$.
(iii) $\operatorname{gcd}(a, b)=p_{1}^{s_{1}} p_{2}^{s_{2}} \ldots p_{k}^{s_{k}}$, where $s_{i}=\min \left(n_{i}, m_{i}\right)$.
(iv) $\operatorname{lcm}(a, b)=p_{1}^{t_{1}} p_{2}^{t_{2}} \ldots p_{k}^{t_{k}}$, where $t_{i}=\max \left(n_{i}, m_{i}\right)$.

Here $\operatorname{lcm}(a, b)$ denotes the least common multiple of a and b, that is, the smallest positive integer divisible by both a and b.

