MATH 433
Applied Algebra

Lecture 5:
 Prime factorisation (continued). Congruences.

Prime factorisation

A positive integer p is prime if it has exactly two positive divisors, namely, 1 and p.

Prime factorisation of a positive integer $n \geq 2$ is a decomposition of n into a product of primes.

Theorem Any positive integer $n \geq 2$ admits a prime factorisation. This factorisation is unique up to rearranging the factors.

Let $a=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{k}^{n_{k}}$ and $b=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{k}^{m_{k}}$, where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes and n_{i}, m_{i} are nonnegative integers.

Theorem (i) $a b=p_{1}^{n_{1}+m_{1}} p_{2}^{n_{2}+m_{2}} \ldots p_{k}^{n_{k}+m_{k}}$.
(ii) a divides b if and only if $n_{i} \leq m_{i}$ for $i=1,2, \ldots, k$.
(iii) $\operatorname{gcd}(a, b)=p_{1}^{s_{1}} p_{2}^{s_{2}} \ldots p_{k}^{s_{k}}$, where $s_{i}=\min \left(n_{i}, m_{i}\right)$.
(iv) $\operatorname{lcm}(a, b)=p_{1}^{t_{1}} p_{2}^{t_{2}} \ldots p_{k}^{t_{k}}$, where $t_{i}=\max \left(n_{i}, m_{i}\right)$.

Corollary $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b$.

Problem. Are there positive integers a and b such that $\operatorname{gcd}\left(a^{2}, b^{2}\right)=3$? Can we have $\operatorname{gcd}\left(a^{2}, b^{2}\right)=8$?

Let $p_{1} p_{2} \ldots p_{k}$ be the prime factorisation of a positive integer c. Then $p_{1}^{2} p_{2}^{2} \ldots p_{k}^{2}$ is the prime factorisation of c^{2}. Hence each prime occurs in the prime factorisation of c^{2} an even number of times.
It follows that whenever 3 is a common divisor of a^{2} and b^{2}, so is $3^{2}=9$. Therefore $\operatorname{gcd}\left(a^{2}, b^{2}\right) \neq 3$.
Now suppose that a^{2} and b^{2} have common divisor $8=2^{3}$. Then a and b have common divisor $2^{2}=4$. Consequently, a^{2} and b^{2} have common divisor $4^{2}=16$ so that $\operatorname{gcd}\left(a^{2}, b^{2}\right) \neq 8$.

Remark. Note that $\operatorname{gcd}\left(a^{2}, b^{2}\right)=(\operatorname{gcd}(a, b))^{2}$.

Fermat and Mersenne primes

Proposition For any integer $k \geq 2$ and any $x, y \in \mathbb{R}$,

$$
x^{k}-y^{k}=(x-y)\left(x^{k-1}+x^{k-2} y+\cdots+x y^{k-2}+y^{k-1}\right) .
$$

If, in addition, k is odd, then

$$
x^{k}+y^{k}=(x+y)\left(x^{k-1}-x^{k-2} y+\cdots-x y^{k-2}+y^{k-1}\right) .
$$

Corollary 1 (Mersenne) The number $2^{n}-1$ is composite whenever n is composite.
(Hint: use the first formula with $x=2^{n / k}, y=1$, and k a prime divisor of n.)
Corollary 2 (Fermat) Let $n \geq 2$ be an integer. Then the number $2^{n}+1$ is composite whenever n is not a power of 2 . (Hint: use the second formula with $x=2^{n / k}, y=1$, and k an odd prime divisor of n.)
Mersenne primes are primes of the form $2^{p}-1$, where p is prime. Fermat primes are primes of the form $2^{2^{n}}+1$.

Congruences

Let n be a positive integer. The integers a and b are called congruent modulo n if they have the same remainder when divided by n. An equivalent condition is that n divides the difference $a-b$.
Notation. $a \equiv b \bmod n$ or $a \equiv b(\bmod n)$.
Examples. $12 \equiv 4 \bmod 8, \quad 24 \equiv 0 \bmod 6, \quad 31 \equiv-4 \bmod 35$.
Proposition If $a \equiv b \bmod n$ then for any integer c,
(i) $a+c n \equiv b \bmod n$;
(ii) $a+c \equiv b+c \bmod n$;
(iii) $a c \equiv b c \bmod n$.

Indeed, if $a-b=k n$, where k is an integer, then
$(a+c n)-b=a-b+c n=(k+c) n$,
$(a+c)-(b+c)=a-b=k n$, and
$a c-b c=(a-b) c=(k c) n$.

Problem. Prove that the number 2015 cannot be expressed as the sum of two squares (of integers).

The key idea is to look at the remainder under division by 4 . We have $2015 \equiv 3 \bmod 4$.
Now let $n=a^{2}+b^{2}$, where $a, b \in \mathbb{Z}$. If a and b are both even, then $n=(2 k)^{2}+(2 m)^{2}=4\left(k^{2}+m^{2}\right)$ so that $n \equiv 0 \bmod 4$.

If a and b are both odd, then
$n=(2 k+1)^{2}+(2 m+1)^{2}=4\left(k^{2}+k+m^{2}+m\right)+2$ so that
$n \equiv 2 \bmod 4$.
If one of the numbers a and b is even and one is odd, then $n=(2 k)^{2}+(2 m+1)^{2}=4\left(k^{2}+m^{2}+m\right)+1$ so that $n \equiv 1 \bmod 4$.
Thus the equation $a^{2}+b^{2}=2015$ has no integer solutions since the congruency $a^{2}+b^{2} \equiv 2015 \bmod 4$ has no solution.

