MATH 433 Applied Algebra

Lecture 7: Modular arithmetic. Invertible congruence classes.

Congruence classes

Given an integer a, the **congruence class of** a**modulo** n is the set of all integers congruent to amodulo n.

Notation. $[a]_n$ or simply [a]. Also denoted $a + n\mathbb{Z}$ as $[a]_n = \{a + nk : k \in \mathbb{Z}\}.$

For any integers a and b, the congruence classes $[a]_n$ and $[b]_n$ either coincide, or else they are disjoint.

The set of all congruence classes modulo n is denoted \mathbb{Z}_n . It consists of n elements $[0]_n, [1]_n, [2]_n, \ldots, [n-1]_n$, which form a partition of the set \mathbb{Z} .

Modular arithmetic

Modular arithmetic is an arithmetic on the set \mathbb{Z}_n for some $n \ge 1$. The arithmetic operations on \mathbb{Z}_n are defined as follows. For any integers *a* and *b*, we let

$$[a]_n + [b]_n = [a + b]_n, [a]_n - [b]_n = [a - b]_n, [a]_n \times [b]_n = [ab]_n.$$

Theorem The arithmetic operations on \mathbb{Z}_n are well defined, namely, they do not depend on the choice of representatives a, b for the congruence classes.

Proof: Let a' be another representative of $[a]_n$ and b' be another representative of $[b]_n$. Then $a' \equiv a \mod n$ and $b' \equiv b \mod n$. According to a previously proved proposition, this implies $a' + b' \equiv a + b \mod n$, $a' - b' \equiv a - b \mod n$ and $a'b' \equiv ab \mod n$. In other words, $[a' + b']_n = [a + b]_n$, $[a' - b']_n = [a - b]_n$ and $[a'b']_n = [ab]_n$.

Invertible congruence classes

We say that a congruence class $[a]_n$ is **invertible** (or the integer *a* is **invertible modulo** *n*) if there exists a congruence class $[b]_n$ such that $[a]_n[b]_n = [1]_n$. If this is the case, then $[b]_n$ is called the **inverse** of $[a]_n$ and denoted $[a]_n^{-1}$. Also, we say that *b* is the (multiplicative) **inverse of** *a* **modulo** *n*.

The set of all invertible congruence classes in \mathbb{Z}_n is denoted G_n or \mathbb{Z}_n^* .

A nonzero congruence class $[a]_n$ is called a **zero-divisor** if $[a]_n[b]_n = [0]_n$ for some $[b]_n \neq [0]_n$.

Examples. • In \mathbb{Z}_6 , the congruence classes $[1]_6$ and $[5]_6$ are invertible since $[1]_n^2 = [5]_6^2 = [1]_6$. The classes $[2]_6$, $[3]_6$, and $[4]_6$ are zero-divisors since $[2]_6[3]_6 = [4]_6[3]_6 = [0]_6$.

• In \mathbb{Z}_7 , all nonzero congruence classes are invertible since $[1]_7^2 = [2]_7[4]_7 = [3]_7[5]_7 = [6]_7^2 = [1]_7$.

Properties of invertible congruence classes

Theorem (i) If $[a]_n$ is invertible, then $[a]_n^{-1}$ is also invertible and $([a]_{n}^{-1})^{-1} = [a]_{n}$. (ii) The inverse $[a]_n^{-1}$ is always unique. (iii) If $[a]_n$ and $[b]_n$ are invertible, then the product $[a]_n[b]_n$ is also invertible and $([a]_n[b]_n)^{-1} = [a]_n^{-1}[b]_n^{-1}$. (iv) Zero-divisors are not invertible. *Proof:* (i) Let $[b]_n = [a]_n^{-1}$. Then $[b]_n [a]_n = [a]_n [b]_n = [1]_n$, which means that $[a]_n = [b]_n^{-1}$. (ii) Suppose that $[b]_n$ and $[b']_n$ are both inverses of $[a]_n$. Then $[b]_n = [b]_n [1]_n = [b]_n [a]_n [b']_n = [1]_n [b']_n = [b']_n$. (iii) We only need to show that $([a]_n[b]_n)([a]_n^{-1}[b]_n^{-1}) = [1]_n$. Indeed, $([a]_n[b]_n)([a]_n^{-1}[b]_n^{-1}) = [a]_n[a]_n^{-1} \cdot [b]_n[b]_n^{-1} = [1]_n[1]_n = [1]_n$. (iv) If $[a]_n$ is invertible and $[a]_n[b]_n = [0]_n$, then $[b]_n = [1]_n [b]_n = [a]_n^{-1} [a]_n [b]_n = [a]_n^{-1} [0]_n = [0]_n.$

Therefore $[a]_n$ cannot be a zero-divisor.

Theorem A nonzero congruence class $[a]_n$ is invertible if and only if gcd(a, n) = 1. Otherwise $[a]_n$ is a zero-divisor.

Proof: Let $d = \gcd(a, n)$. If d > 1 then n/d and a/d are integers, $\lfloor n/d \rfloor_n \neq \lfloor 0 \rfloor_n$, and $\lfloor a \rfloor_n \lfloor n/d \rfloor_n = \lfloor an/d \rfloor_n = \lfloor a/d \rfloor_n \lfloor n \rfloor_n = \lfloor a/d \rfloor_n \lfloor 0 \rfloor_n$. Hence $\lfloor a \rfloor_n$ is a zero-divisor.

Now consider the case gcd(a, n) = 1. In this case 1 is an integral linear combination of a and n: ma + kn = 1 for some $m, k \in \mathbb{Z}$. Then $[1]_n = [ma + kn]_n = [ma]_n = [m]_n [a]_n$. Thus $[a]_n$ is invertible and $[a]_n^{-1} = [m]_n$.

Problem. Find the inverse of 23 modulo 107.

Numbers 23 and 107 are coprime (they are actually prime). We use the matrix method to represent 1 as an integral linear combination of these numbers.

$$\begin{pmatrix} 1 & 0 & | & 107 \\ 0 & 1 & | & 23 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -4 & | & 15 \\ 0 & 1 & | & 23 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -4 & | & 15 \\ -1 & 5 & | & 8 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 2 & -9 & | & 7 \\ -1 & 5 & | & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -9 & | & 7 \\ -3 & 14 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 23 & -107 & | & 0 \\ -3 & 14 & | & 1 \end{pmatrix}$$

From the 2nd row of the last matrix we read off that $(-3) \cdot 107 + 14 \cdot 23 = 1$. It follows that $[1]_{107} = [(-3) \cdot 107 + 14 \cdot 23]_{107} = [14 \cdot 23]_{107} = [14]_{107} [23]_{107}$. Thus $[23]_{107}^{-1} = [14]_{107}$.