MATH 433 Applied Algebra Lecture 9: Chinese Remainder Theorem.

Linear congruences

Linear congruence is a congruence of the form $ax \equiv b \mod n$, where x is an integer variable. We can regard it as a linear equation in \mathbb{Z}_n : $[a]_n X = [b]_n$, where $X = [x]_n$.

Theorem 1 If the congruence class $[a]_n$ is invertible, then the equation $[a]_n X = [b]_n$ has a unique solution in \mathbb{Z}_n , which is $X = [a]_n^{-1}[b]_n$.

Theorem 2 The linear congruence $ax \equiv b \mod n$ has a solution if and only if $d = \gcd(a, n)$ divides b. If this is the case, then the solution set consists of d congruence classes modulo n.

Chinese Remainder Theorem

Theorem Let $n, m \ge 2$ be relatively prime integers and a, b be any integers. Then the system

$$\begin{cases} x \equiv a \mod n, \\ x \equiv b \mod m \end{cases}$$

of congruences has a solution. Moreover, this solution is unique modulo *nm*.

Proof: Since gcd(n, m) = 1, we have sn + tm = 1 for some integers s, t. Let c = bsn + atm. Then

$$c = bsn + a(1 - sn) = a + (b - a)sn \equiv a \pmod{n},$$

$$c = b(1 - tm) + atm = b + (a - b)tm \equiv b \pmod{m}.$$

Therefore c is a solution. Also, any element of $[c]_{nm}$ is a solution. Conversely, if x is a solution, then n|(x-c) and m|(x-c), which implies that nm|(x-c), i.e., $x \in [c]_{nm}$.

Problem. Solve simultaneous congruences $\begin{cases} x \equiv 3 \mod 12, \\ x \equiv 2 \mod 29. \end{cases}$

The moduli 12 and 29 are coprime. First we use the Euclidean algorithm to represent 1 as an integral linear combination of 12 and 29:

$$\begin{pmatrix} 1 & 0 & | & 12 \\ 0 & 1 & | & 29 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & | & 12 \\ -2 & 1 & | & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 5 & -2 & | & 2 \\ -2 & 1 & | & 5 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 5 & -2 & | & 2 \\ -12 & 5 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 29 & -12 & | & 0 \\ -12 & 5 & | & 1 \end{pmatrix}.$$

Hence $(-12) \cdot 12 + 5 \cdot 29 = 1$. Let $x_1 = 5 \cdot 29 = 145$, $x_2 = (-12) \cdot 12 = -144$. Then
$$\begin{cases} x_1 \equiv 1 \mod 12, \\ x_1 \equiv 0 \mod 29. \end{cases} \qquad \begin{cases} x_2 \equiv 0 \mod 12, \\ x_2 \equiv 1 \mod 29. \end{cases}$$

It follows that one solution is $x = 3x_1 + 2x_2 = 147$. The other solutions form the congruence class of 147 modulo $12 \cdot 29 = 348$

Problem. Solve a system of congruences $\begin{cases} x \equiv 3 \mod 12, \\ x \equiv 2 \mod 10. \end{cases}$

The system has no solutions. Indeed, any solution of the first congruence must be an odd number while any solution of the second congruence must be an even number.

Problem. Solve a system of congruences
$$\begin{cases} x \equiv 6 \mod{12}, \\ x \equiv 2 \mod{10}. \end{cases}$$

The general solution of the first congruence is x = 6 + 12y, where y is an arbitrary integer. Substituting this into the second congruence, we obtain $6 + 12y \equiv 2 \mod 10 \iff$ $12y \equiv -4 \mod 10 \iff 6y \equiv -2 \mod 5 \iff y \equiv 3 \mod 5.$ Thus y = 3 + 5k, where k is an arbitrary integer. Then x = 6 + 12y = 6 + 12(3 + 5k) = 42 + 60k or, equivalently, $x \equiv 42 \mod 60$.

Note that the solution is unique modulo 60, which is the least common multiple of 12 and 10.

Chinese Remainder Theorem (generalized)

Theorem Let $n_1, n_2, ..., n_k \ge 2$ be pairwise coprime integers and $a_1, a_2, ..., a_k$ be any integers. Then the system of congruences

$$\begin{cases} x \equiv a_1 \mod n_1, \\ x \equiv a_2 \mod n_2, \\ \dots \dots \\ x \equiv a_k \mod n_k \end{cases}$$

has a solution which is unique modulo $n_1 n_2 \dots n_k$.

Idea of the proof: The theorem is proved by induction on k. The base case k = 1 is trivial. The induction step uses the usual Chinese Remainder Theorem.

Problem. Solve simultaneous congruences

$$\begin{cases} x \equiv 1 \mod 3, \\ x \equiv 2 \mod 4, \\ x \equiv 3 \mod 5. \end{cases}$$

First we solve the first two congruences. Let $x_1 = 4$, $x_2 = -3$. Then $x_1 \equiv 1 \mod 3$, $x_1 \equiv 0 \mod 4$ and $x_2 \equiv 0 \mod 3$, $x_2 \equiv 1 \mod 4$. It follows that $x_1 + 2x_2 = -2$ is a solution. The general solution is $x \equiv -2 \mod 12$. Now it remains to solve the system $\begin{cases} x \equiv -2 \mod 12, \\ x \equiv 3 \mod 5. \end{cases}$

We need to represent 1 as an integral linear combination of 12 and 5: $1 = (-2) \cdot 12 + 5 \cdot 5$. Then a particular solution is $x = 3 \cdot (-2) \cdot 12 + (-2) \cdot 5 \cdot 5 = -122$. The general solution is $x \equiv -122 \mod 60$, which is the same as $x \equiv -2 \mod 60$.

Problem. Solve a system of congruences

$$\begin{cases} 2x \equiv 3 \mod 15, \\ x \equiv 2 \mod 31. \end{cases}$$

We begin with solving the first linear congruence. Since gcd(2, 15) = 1, all solutions form a single congruence class modulo 15. Namely, x is a solution if $[x]_{15} = [2]_{15}^{-1}[3]_{15}$. We find that $[2]_{15}^{-1} = [8]_{15}$. Hence $[x]_{15} = [8]_{15}[3]_{15} = [24]_{15} = [9]_{15}$. Equivalently, $x \equiv 9 \mod 15$.

Now the original system is reduced to

$$\begin{cases} x \equiv 9 \mod{15}, \\ x \equiv 2 \mod{31}. \end{cases}$$

Next we represent 1 as an integral linear combination of 15 and 31: $1 = (-2) \cdot 15 + 31$. It follows that one solution to the system is $x = 2 \cdot (-2) \cdot 15 + 9 \cdot 31 = 219$. All solutions form the congruence class of 219 modulo $15 \cdot 31 = 465$.