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Lecture 11:
Euler’s phi-function.



Order of a congruence class

A congruence class [a]n has finite order if [a]kn = [1]n for
some integer k ≥ 1. The smallest k with this property is
called the order of [a]n. We also say that k is the order of a
modulo n.

Theorem A congruence class [a]n has finite order if and only
if it is invertible, i.e., if gcd(a, n) = 1.

Proposition Let k be the order of an integer a modulo n.
Then as ≡ 1 mod n if and only if s is a multiple of k.

Fermat’s Little Theorem Let p be a prime number. Then
ap−1 ≡ 1 mod p for every integer a not divisible by p.

Corollary Let a be an integer not divisible by a prime number
p. Then the order of a modulo p is a divisor of p − 1.



Euler’s Theorem

Zn: the set of all congruence classes modulo n.

Gn: the set of all invertible congruence classes
modulo n.

Theorem (Euler) Let n ≥ 2 and φ(n) be the

number of elements in Gn. Then

aφ(n) ≡ 1 mod n

for every integer a coprime with n.

Corollary Let a be an integer coprime with an

integer n ≥ 2. Then the order of a modulo n is a
divisor of φ(n).



Proof of Euler’s Theorem

Proof: Let [b1], [b2], . . . , [bm] be the list of all elements of
Gn. Note that m = φ(n). Consider another list:

[a][b1], [a][b2], . . . , [a][bm].

Since gcd(a, n) = 1, the congruence class [a]n is in Gn as well.
Hence the second list also consists of elements from Gn. Also,
all elements in the second list are distinct as

[a][b] = [a][b′] =⇒ [a]−1[a][b] = [a]−1[a][b′] =⇒ [b] = [b′].

It follows that the second list consists of the same elements as
the first (arranged in a different way). Therefore

[a][b1] · [a][b2] · · · [a][bm] = [b1] · [b2] · · · [bm].

Hence [a]mX = X , where X = [b1] · [b2] · · · [bm].
Note that X ∈ Gn since Gn is closed under multiplication.
That is, X is invertible. Then [a]mXX−1 = XX−1

=⇒ [a]m[1] = [1] =⇒ [am] = [1]. Recall that m = φ(n).



Euler’s phi function

The number of elements in Gn, the set of invertible
congruence classes modulo n, is denoted φ(n). In other
words, φ(n) counts how many of the numbers 1, 2, . . . , n are
coprime with n. φ(n) is called Euler’s φ-function or Euler’s
totient function.

Proposition 1 If p is prime, then φ(ps) = ps − ps−1.

Proposition 2 If gcd(m, n) = 1, then φ(mn) = φ(m)φ(n).

Theorem Let n = ps1
1
ps2
2
. . . p

sk
k , where p1, p2, . . . , pk are

distinct primes and s1, . . . , sk are positive integers. Then

φ(n) = ps1−1

1
(p1 − 1)ps2−1

2
(p2 − 1) . . .psk−1

k (pk − 1).

Sketch of the proof: The proof is by induction on k. The
base of induction is Proposition 1. The induction step relies
on Proposition 2.



Proposition If gcd(m, n) = 1, then φ(mn) = φ(m)φ(n).

Proof: Let Zm × Zn denote the set of all pairs (X ,Y ) such
that X ∈ Zm and Y ∈ Zn. We define a function
f : Zmn → Zm × Zn by the formula f ([a]mn) = ([a]m, [a]n).

Since m and n divide mn, this function is well defined (does
not depend on the choice of the representative a). Since
gcd(m, n) = 1, the Chinese Remainder Theorem implies that
this function establishes a one-to-one correspondence between
the sets Zmn and Zm × Zn.

Furthermore, an integer a is coprime with mn if and only if it
is coprime with m and with n. Therefore the function f also
establishes a one-to-one correspondence between Gmn and
Gm × Gn, the latter being the set of pairs (X ,Y ) such that
X ∈ Gm and Y ∈ Gn. It follows that the sets Gmn and
Gm × Gn consist of the same number of elements. Thus
φ(mn) = φ(m)φ(n).



Examples. φ(11) = 10,

φ(25) = φ(52) = 5 · 4 = 20,
φ(27) = φ(33) = 32 · 2 = 18,

φ(100) = φ(22 · 52) = φ(22)φ(52) = 2 · 20 = 40,
φ(1001) = φ(7 · 11 · 13) = φ(7)φ(11)φ(13)

= 6 · 10 · 12 = 720.

Problem. Determine the last two digits of 32015.

The last two digits form the remainder under
division by 100. Since φ(100) = 40, we have

340 ≡ 1 mod 100.

Then [32015] = [3]2015 = [3]40·50+15 = ([3]40)50 [3]15

= [3]15 = ([3]7)2[3] = [2187]2[3] = [−13]2[3]

= [169][3] = [−31][3] = [7]. Hence 32015 = ...07.


