MATH 433 Applied Algebra Lecture 14: Functions. Relations. Definition. The **Cartesian product** $X \times Y$ of two sets X and Y is the set of all ordered pairs (x, y) such that $x \in X$ and $y \in Y$.

The Cartesian square $X \times X$ is also denoted X^2 .

If the sets X and Y are finite, then $\#(X \times Y) = (\#X)(\#Y)$, where #S denote the number of elements in a set S.

Functions

A function $f: X \to Y$ is an assignment: to each $x \in X$ we assign an element $f(x) \in Y$.

The **graph** of the function $f : X \to Y$ is defined as the subset of $X \times Y$ consisting of all pairs of the form $(x, f(x)), x \in X$.

Definition. A function $f : X \to Y$ is surjective (or onto) if for each $y \in Y$ there exists at least one $x \in X$ such that f(x) = y.

The function f is **injective** (or **one-to-one**) if f(x') = f(x) $\implies x' = x$.

Finally, f is **bijective** if it is both surjective and injective. Equivalently, if for each $y \in Y$ there is exactly one $x \in X$ such that f(x) = y.

The inverse function f^{-1} exists if and only if f is bijective.

Relations

Definition. Let X and Y be sets. A **relation** R from X to Y is given by specifying a subset of the Cartesian product: $S_R \subset X \times Y$.

If $(x, y) \in S_R$, then we say that x is related to y (in the sense of R or by R) and write xRy.

Remarks. • Usually the relation R is identified with the set S_R .

• In the case X = Y, the relation R is called a relation on X.

Examples. • "is equal to" $xRy \iff x = y$

• "is not equal to" $xRy \iff x \neq y$

• "is mapped by f to" $xRy \iff y = f(x)$, where $f : X \to Y$ is a function. Equivalently, R is the graph of the function f.

• "is the image under f of" (from Y to X) $yRx \iff y = f(x)$, where $f : X \to Y$ is a function. If f is invertible, then R is the graph of f^{-1} .

• reversed R'

 $xRy \iff yR'x$, where R' is a relation from Y to X.

• not *R*′

 $xRy \iff$ not xR'y, where R' is a relation from X to Y. Equivalently, $R = (X \times Y) \setminus R'$ (set difference).

Relations on a set

• "is equal to" $xRy \iff x = y$ • "is not equal to" $xRy \iff x \neq y$ • "is less than" $X = \mathbb{R}, xRy \iff x < y$ • "is less than or equal to"

$$X = \mathbb{R}, \ xRy \iff x \leq y$$

- "is contained in" X = the set of all subsets of some set Y, $xRy \iff x \subset y$
- "is congruent modulo *n* to"

$$X = \mathbb{Z}, \ xRy \iff x \equiv y \mod n$$

• "divides"

 $X = \mathbb{P}, \ xRy \Longleftrightarrow x|y$

A relation R on a finite set X can be represented by a **directed graph**.

Vertices of the graph are elements of X, and we have a directed edge from x to y if and only if xRy.

Another way to represent the relation R is the **adjacency table**.

Rows and columns are labeled by elements of X. We put 1 at the intersection of a row x with a column y if xRy. Otherwise we put 0.

	а	b	С
а	0	1	1
b	0	1	1
С	1	0	0

	а	b	С	d	е
а	0	1	1	0	0
b	0	1	1	0	0
С	0	0	0	1	0
d	0	0	0	0	1
е	1	0	0	0	0

Properties of relations

Definition. Let R be a relation on a set X. We say that R is

- reflexive if xRx for all $x \in X$,
- symmetric if, for all $x, y \in X$, xRy implies yRx,
- antisymmetric if, for all $x, y \in X$, xRy and yRx cannot hold simultaneously,
- weakly antisymmetric if, for all $x, y \in X$, *xRy* and *yRx* imply that x = y,

• transitive if, for all $x, y, z \in X$, xRy and yRz imply that xRz.

Partial ordering

Definition. A relation R on a set X is a **partial** ordering (or **partial order**) if R is reflexive, weakly antisymmetric, and transitive:

• xRx,

•
$$xRy$$
 and $yRx \implies x = y$,

•
$$xRy$$
 and $yRz \implies xRz$.

A relation R on a set X is a **strict partial order** if R is antisymmetric and transitive:

•
$$xRy \implies \text{not } yRx$$
,

•
$$xRy$$
 and $yRz \implies xRz$.

Examples. "is less than or equal to", "is contained in", "is a divisor of" are partial orders. "is less than" is a strict order.

Equivalence relation

Definition. A relation R on a set X is an **equivalence** relation if R is reflexive, symmetric, and transitive:

- xRx,
- $xRy \implies yRx$,
- xRy and $yRz \implies xRz$.

Examples. "is equal to", "is congruent modulo n to" are equivalence relations.

Given an equivalence relation R on X, the **equivalence class** of an element $x \in X$ relative to R is the set of all elements $y \in X$ such that yRx.

Theorem The equivalence classes form a **partition** of the set X, which means that

• any two equivalence classes either coincide, or else they are disjoint,

• any element of X belongs to some equivalence class.