MATH 433

Applied Algebra

Lecture 17:

Cycle decomposition.

Order of a permutation.

Permutations

Let X be a finite set. A **permutation** of X is a bijection from X to itself.

Two-row notation.
$$\pi = \begin{pmatrix} a & b & c & \dots \\ \pi(a) & \pi(b) & \pi(c) & \dots \end{pmatrix}$$
,

where a, b, c, \ldots is a list of all elements in the domain of π .

The set of all permutations of a finite set X is called the **symmetric group** on X. *Notation:* S_X , Σ_X , $\operatorname{Sym}(X)$.

The set of all permutations of $\{1, 2, ..., n\}$ is called the **symmetric group** on n symbols and denoted S(n) or S_n .

Given two permutations π and σ , the composition $\pi\sigma$ is called the **product** of these permutations. In general, $\pi\sigma \neq \sigma\pi$, i.e., multiplication of permutations is not commutative.

Cycles

A permutation π of a set X is called a **cycle** (or **cyclic**) of length r if there exist r distinct elements $x_1, x_2, \ldots, x_r \in X$ such that

$$\pi(x_1) = x_2, \ \pi(x_2) = x_3, \ldots, \ \pi(x_{r-1}) = x_r, \ \pi(x_r) = x_1,$$

and $\pi(x) = x$ for any other $x \in X$.

Notation. $\pi = (x_1 \ x_2 \ \dots \ x_r)$.

The identity function is (the only) cycle of length 1. Any cycle of length 2 is called a **transposition**. An **adjacent transposition** is a transposition of the form $(k \ k+1)$.

The inverse of a cycle is also a cycle of the same length. Indeed, if $\pi = (x_1 \ x_2 \ \dots \ x_r)$, then $\pi^{-1} = (x_r \ x_{r-1} \ \dots \ x_2 \ x_1)$.

Cycle decomposition

Let π be a permutation of X. We say that π moves an element $x \in X$ if $\pi(x) \neq x$. Otherwise π fixes x.

Two permutations π and σ are called **disjoint** if the set of elements moved by π is disjoint from the set of elements moved by σ .

Theorem If π and σ are disjoint permutations in S_X , then they commute: $\pi \sigma = \sigma \pi$.

Idea of the proof: If π moves an element x, then it also moves $\pi(x)$. Hence σ fixes both so that $\pi\sigma(x) = \sigma\pi(x) = \pi(x)$.

Theorem Any permutation can be expressed as a product of disjoint cycles. This **cycle decomposition** is unique up to rearrangement of the cycles involved.

Idea of the proof: Given $\pi \in S_X$, for any $x \in X$ consider a sequence $x_0 = x, x_1, x_2, \ldots$, where $x_{m+1} = \pi(x_m)$. Let r be the least index such that $x_r = x_k$ for some k < r. Then k = 0.

Examples

$$\bullet \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8 \end{pmatrix}$$

$$= (1 & 2 & 4 & 9 & 3 & 7 & 5)(6 & 12 & 8 & 11).$$

- $(1\ 2)(2\ 3)(3\ 4)(4\ 5)(5\ 6) = (1\ 2\ 3\ 4\ 5\ 6).$
- \bullet (1 2)(1 3)(1 4)(1 5) = (1 5 4 3 2).
- \bullet (2 4 3)(1 2)(2 3 4) = (1 4).

Powers of a permutation

Let π be a permutation. The positive **powers** of π are defined inductively:

$$\pi^1 = \pi$$
 and $\pi^{k+1} = \pi \cdot \pi^k$ for every integer $k \ge 1$.

The negative powers of π are defined as the positive powers of its inverse: $\pi^{-k} = (\pi^{-1})^k$ for every positive integer k. Finally, we set $\pi^0 = \mathrm{id}$.

Theorem Let π be a permutation and $r, s \in \mathbb{Z}$. Then

(i)
$$\pi^{r}\pi^{s} = \pi^{r+s}$$
,

(ii)
$$(\pi^r)^s = \pi^{rs}$$
,

(iii)
$$(\pi^r)^{-1} = \pi^{-r}$$
.

Remark. The theorem is proved in the same way as the analogous statement on invertible congruence classes.

Order of a permutation

Theorem Let π be a permutation. Then there is a positive integer m such that $\pi^m = \mathrm{id}$.

Proof: Consider the list of powers: $\pi, \pi^2, \pi^3, \ldots$ Since there are only finitely many permutations of any finite set, there must be repetitions within the list. Assume that $\pi^r = \pi^s$ for some 0 < r < s. Then $\pi^{s-r} = \pi^s \pi^{-r} = \pi^s (\pi^r)^{-1} = \mathrm{id}$.

The **order** of a permutation π , denoted $o(\pi)$, is defined as the smallest positive integer m such that $\pi^m = \mathrm{id}$.

Theorem Let π be a permutation of order m. Then $\pi^r = \pi^s$ if and only if $r \equiv s \mod m$. In particular, $\pi^r = \mathrm{id}$ if and only if the order m divides r.

Theorem Let π be a cyclic permutation. Then the order $o(\pi)$ is the length of the cycle π .

Examples. •
$$\pi = (1 \ 2 \ 3 \ 4 \ 5)$$
.

$$\pi^2 = (1 \ 3 \ 5 \ 2 \ 4), \ \pi^3 = (1 \ 4 \ 2 \ 5 \ 3),$$
 $\pi^4 = (1 \ 5 \ 4 \ 3 \ 2), \ \pi^5 = \text{id}.$
 $\implies o(\pi) = 5.$

•
$$\sigma = (1\ 2\ 3\ 4\ 5\ 6)$$
.
 $\sigma^2 = (1\ 3\ 5)(2\ 4\ 6), \ \sigma^3 = (1\ 4)(2\ 5)(3\ 6),$
 $\sigma^4 = (1\ 5\ 3)(2\ 6\ 4), \ \sigma^5 = (1\ 6\ 5\ 4\ 3\ 2), \ \sigma^6 = \mathrm{id}$

$$\sigma^2 = (1\ 3\ 5)(2\ 4\ 6), \ \sigma^3 = (1\ 4)(2\ 5)(3\ 6),$$
 $\sigma^4 = (1\ 5\ 3)(2\ 6\ 4), \ \sigma^5 = (1\ 6\ 5\ 4\ 3\ 2), \ \sigma^6 = \mathrm{id}.$
 $\Longrightarrow \ o(\sigma) = 6.$

•
$$\tau = (1\ 2\ 3)(4\ 5)$$
.
 $\tau^2 = (1\ 3\ 2), \ \tau^3 = (1\ 3\ 2)$

 $\implies o(\tau) = 6.$

 $\tau^5 = (1 \ 3 \ 2)(4 \ 5), \ \tau^6 = id.$

$$\Rightarrow o(\sigma) = 6.$$

$$\Rightarrow o(\sigma) = 6.$$

$$\bullet \tau = (1 \ 2 \ 3)(4 \ 5).$$

$$\tau^2 = (1 \ 3 \ 2), \ \tau^3 = (4 \ 5), \ \tau^4 = (1 \ 2 \ 3), \ \tau^4 = (1 \ 2 \ 3),$$

Lemma 1 Let π and σ be two commuting permutations:

 $\pi \sigma = \sigma \pi$. Then

(i) the powers π^r and σ^s commute for all $r, s \in \mathbb{Z}$,

(ii)
$$(\pi\sigma)^r = \pi^r \sigma^r$$
 for all $r \in \mathbb{Z}$,

Lemma 2 Let π and σ be disjoint permutations in S(n).

Then (i) they commute: $\pi \sigma = \sigma \pi$,

(ii) $(\pi\sigma)^r = \mathrm{id}$ if and only if $\pi^r = \sigma^r = \mathrm{id}$,

(iii) $o(\pi\sigma) = \operatorname{lcm}(o(\pi), o(\sigma)).$

Idea of the proof: The set $\{1,2,\ldots,n\}$ splits into 3 subsets: elements moved by π , elements moved by σ , and elements fixed by both π and σ . All three sets are invariant under π and σ . It follows that π^r and σ^r are also disjoint.

Theorem Let $\pi \in S(n)$ and suppose that $\pi = \sigma_1 \sigma_2 \dots \sigma_k$ is a decomposition of π as a product of disjoint cycles. Then the order of π is the least common multiple of the lengths of cycles $\sigma_1, \dots, \sigma_k$.