Lecture 18:

MATH 433

Applied Algebra

Sign of a permutation.

Permutations

Let X be a finite set. A **permutation** of X is a bijection from X to itself. The set of all permutations of $\{1, 2, ..., n\}$ is called the **symmetric group** on n symbols and denoted S(n).

Theorem Any permutation can be expressed as a product of disjoint cycles. This **cycle decomposition** is unique up to rearrangement of the cycles involved.

Theorem Let π be a permutation. Then there is a positive integer m such that $\pi^m = \mathrm{id}$.

The **order** of a permutation π , denoted $o(\pi)$, is defined as the smallest positive integer m such that $\pi^m = \mathrm{id}$.

Theorem Let $\pi \in S(n)$ and suppose that $\pi = \sigma_1 \sigma_2 \dots \sigma_k$ is a decomposition of π as a product of disjoint cycles. Then the order of π is the least common multiple of the lengths of cycles $\sigma_1, \dots, \sigma_k$.

Sign of a permutation

Theorem 1 (i) Any permutation is a product of transpositions. (ii) If $\pi = \tau_1 \tau_2 \dots \tau_n = \tau_1' \tau_2' \dots \tau_m'$, where τ_i, τ_j' are transpositions, then the numbers n and m are of the same parity.

A permutation π is called **even** if it is a product of an even number of transpositions, and **odd** if it is a product of an odd number of transpositions.

The **sign** $\operatorname{sgn}(\pi)$ of the permutation π is defined to be +1 if π is even, and -1 if π is odd.

- **Theorem 2 (i)** $\operatorname{sgn}(\pi\sigma) = \operatorname{sgn}(\pi)\operatorname{sgn}(\sigma)$ for any $\pi, \sigma \in S(n)$.
- (ii) $\operatorname{sgn}(\pi^{-1}) = \operatorname{sgn}(\pi)$ for any $\pi \in S(n)$.
- (iii) $\operatorname{sgn}(\operatorname{id}) = 1$.
- (iv) $sgn(\tau) = -1$ for any transposition τ .
- (v) $sgn(\sigma) = (-1)^{r-1}$ for any cycle σ of length r.

Let $\pi \in S(n)$ and i,j be integers, $1 \le i < j \le n$. We say that the permutation π preserves order of the pair (i,j) if $\pi(i) < \pi(j)$. Otherwise π makes an **inversion**. Denote by $N(\pi)$ the number of inversions made by the permutation π .

Lemma 1 Let $\tau, \pi \in S(n)$ and suppose that τ is an adjacent transposition, $\tau = (k \ k+1)$. Then $|N(\tau\pi) - N(\pi)| = 1$.

Proof: For every pair (i,j), $1 \le i < j \le n$, let us compare the order of pairs $\pi(i), \pi(j)$ and $\tau\pi(i), \tau\pi(j)$. We observe that the order differs exactly for one pair, when $\{\pi(i), \pi(j)\} = \{k, k+1\}$. The lemma follows.

Lemma 2 Let $\pi \in S(n)$ and $\tau_1, \tau_2, \ldots, \tau_k$ be adjacent transpositions. Then **(i)** for any $\pi \in S(n)$ the numbers k and $N(\tau_1\tau_2\ldots\tau_k\pi)-N(\pi)$ are of the same parity, **(ii)** the numbers k and $N(\tau_1\tau_2\ldots\tau_k)$ are of the same parity.

Sketch of the proof: (i) follows from Lemma 1 by induction on k. (ii) is a particular case of part (i), when $\pi=\mathrm{id}$.

Lemma 3 (i) Any cycle of length r is a product of r-1 transpositions. **(ii)** Any transposition is a product of an odd number of adjacent transpositions.

Proof: (i)
$$(x_1 \ x_2 \ \dots \ x_r) = (x_1 \ x_2)(x_2 \ x_3)(x_3 \ x_4) \dots (x_{r-1} \ x_r).$$

(ii) $(k \ k+r) = \sigma^{-1}(k \ k+1)\sigma$, where $\sigma = (k+1 \ k+2 \ \dots \ k+r).$

By the above, $\sigma = (k+1 \ k+2)(k+2 \ k+3) \dots (k+r-1 \ k+r)$ and $\sigma^{-1} = (k+r \ k+r-1) \dots (k+3 \ k+2)(k+2 \ k+1)$.

Theorem (i) Any permutation is a product of transpositions. **(ii)** If $\pi = \tau_1 \tau_2 \dots \tau_k$, where τ_i are transpositions, then the numbers k and $N(\pi)$ are of the same parity.

Proof: (i) Any permutation is a product of disjoint cycles. By Lemma 3, any cycle is a product of transpositions.

(ii) By Lemma 3, each of $\tau_1, \tau_2, \ldots, \tau_k$ is a product of an odd number of adjacent transpositions. Hence $\pi = \tau_1' \tau_2' \ldots \tau_m'$, where τ_i' are adjacent transpositions and number m is of the same parity as k. By Lemma 2, m has the same parity as $N(\pi)$.

Definition of determinant

Definition.
$$\det(a) = a$$
, $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$, $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}.$

If
$$A=(a_{ij})$$
 is an $n{ imes}n$ matrix then
$$\det A=\sum_{\pi\in S(n)}\operatorname{sgn}(\pi)\,a_{1,\pi(1)}\,a_{2,\pi(2)}\dots a_{n,\pi(n)},$$

where π runs over all permutations of $\{1, 2, ..., n\}$.

Theorem $\det A^T = \det A$.

 $\sigma \in S(n)$

Proof: Let $A=(a_{ij})_{1\leq i,j\leq n}$. Then $A^T=(b_{ij})_{1\leq i,j\leq n}$, where $b_{ij}=a_{ji}$. We have

$$\det A^T = \sum_{\pi \in S(n)} \operatorname{sgn}(\pi) \ b_{1,\pi(1)} \ b_{2,\pi(2)} \dots b_{n,\pi(n)}$$

$$= \sum_{\pi \in S(n)} \operatorname{sgn}(\pi) \ a_{\pi(1),1} \ a_{\pi(2),2} \dots a_{\pi(n),n}$$

$$= \sum_{\pi \in S(n)} \operatorname{sgn}(\pi) \ a_{1,\pi^{-1}(1)} \ a_{2,\pi^{-1}(2)} \dots a_{n,\pi^{-1}(n)}.$$

When π runs over all permutations of $\{1, 2, \ldots, n\}$, so does $\sigma = \pi^{-1}$. It follows that

$$\det A^T = \sum_{\sigma \in S(n)} \operatorname{sgn}(\sigma^{-1}) a_{1,\sigma(1)} a_{2,\sigma(2)} \dots a_{n,\sigma(n)}$$
$$= \sum_{\sigma \in S(n)} \operatorname{sgn}(\sigma) a_{1,\sigma(1)} a_{2,\sigma(2)} \dots a_{n,\sigma(n)} = \det A.$$

Theorem 1 Suppose A is a square matrix and B is obtained from A by exchanging two rows. Then $\det B = -\det A$.

Theorem 2 Suppose A is a square matrix and B is obtained from A by permuting its rows. Then $\det B = \det A$ if the permutation is even and $\det B = -\det A$ if the permutation is odd.