MATH 433
 Applied Algebra

 Lecture 21:Transformation groups.

Abstract groups

Definition. A group is a set G, together with a binary operation $*$, that satisfies the following axioms:
(G1: closure)
for all elements g and h of $G, g * h$ is an element of G;
(G2: associativity)
$(g * h) * k=g *(h * k)$ for all $g, h, k \in G$;
(G3: existence of identity)
there exists an element $e \in G$, called the identity (or unit) of G, such that $e * g=g * e=g$ for all $g \in G$;
(G4: existence of inverse) for every $g \in G$ there exists an element $h \in G$, called the inverse of g, such that $g * h=h * g=e$.
The group $(G, *)$ is said to be commutative (or Abelian) if it satisfies an additional axiom:
(G5: commutativity) $g * h=h * g$ for all $g, h \in G$.

Transformation groups

Definition. A transformation group is a group of bijective transformations of a set X with the operation of composition.

Examples.

- Symmetric group $S(n)$: all permutations of $\{1,2, \ldots, n\}$.
- Alternating group $A(n)$: even permutations of $\{1,2, \ldots, n\}$.
- Homeo($\mathbb{R})$: the group of all invertible functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that both f and f^{-1} are continuous (such functions are called homeomorphisms).
- Homeo ${ }^{+}(\mathbb{R})$: the group of all increasing functions in $\operatorname{Homeo}(\mathbb{R})$ (i.e., those that preserve orientation of the real line).
- $\operatorname{Diff}(\mathbb{R})$: the group of all invertible functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that both f and f^{-1} are continuously differentiable (such functions are called diffeomorphisms).

Groups of symmetries

Definition. A transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called a motion (or a rigid motion) if it preserves distances between points.

Theorem All motions of \mathbb{R}^{n} form a transformation group. Any motion $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ can be represented as $f(\mathbf{x})=A \mathbf{x}+\mathbf{x}_{0}$, where $\mathbf{x}_{0} \in \mathbb{R}^{n}$ and A is an orthogonal matrix.

Given a geometric figure $F \subset \mathbb{R}^{n}$, a symmetry of F is a motion of \mathbb{R}^{n} that preserves F. All symmetries of F form a transformation group.
The dihedral group $D(n)$ is the group of symmetries of a regular n-gon. It consists of $2 n$ elements: n reflections, $n-1$ rotations by angles $2 \pi k / n, k=1,2, \ldots, n-1$, and the identity function.

Equlateral triangle

Any symmetry of a polygon maps vertices to vertices. Therefore it induces a permutation on the set of vertices. Moreover, the symmetry is uniquely recovered from the permutation.

In the case of the equilateral triangle, any permutation of vertices comes from a symmetry.

Square
In the case of the square, not every permutation of vertices comes from a symmetry of the square. The reason is that a symmetry must map adjacent vertices to adjacent vertices.

Regular tetrahedron
Any symmetry of a polyhedron maps vertices to vertices. In the case of the regular tetrahedron, any permutation of vertices comes from a symmetry.

Matrix groups

A group is called linear if its elements are $n \times n$ matrices and the group operation is matrix multiplication.

- General linear group $G L(n, \mathbb{R})$ consists of all $n \times n$ matrices that are invertible (i.e., with nonzero determinant). The identity element is $I=\operatorname{diag}(1,1, \ldots, 1)$.
- Special linear group $S L(n, \mathbb{R})$ consists of all $n \times n$ matrices with determinant 1.
Closed under multiplication since $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. Also, $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det}(A))^{-1}$.
- Orthogonal group $O(n, \mathbb{R})$ consists of all orthogonal $n \times n$ matrices ($A^{T} A=A A^{T}=I$).
- Special orthogonal group $S O(n, \mathbb{R})$ consists of all orthogonal $n \times n$ matrices with determinant 1 .

$$
S O(n, \mathbb{R})=O(n, \mathbb{R}) \cap S L(n, \mathbb{R})
$$

