MATH 433 Applied Algebra Lecture 21: Transformation groups.

Abstract groups

Definition. A **group** is a set G, together with a binary operation *, that satisfies the following axioms:

(G1: closure)

for all elements g and h of G, g * h is an element of G;

(G2: associativity)

(g*h)*k = g*(h*k) for all $g,h,k \in G$;

(G3: existence of identity)

there exists an element $e \in G$, called the **identity** (or **unit**) of G, such that e * g = g * e = g for all $g \in G$;

(G4: existence of inverse)

for every $g \in G$ there exists an element $h \in G$, called the **inverse** of g, such that g * h = h * g = e.

The group (G, *) is said to be **commutative** (or **Abelian**) if it satisfies an additional axiom:

(G5: commutativity) g * h = h * g for all $g, h \in G$.

Transformation groups

Definition. A transformation group is a group of bijective transformations of a set X with the operation of composition.

Examples.

- Symmetric group S(n): all permutations of $\{1, 2, ..., n\}$.
- Alternating group A(n): even permutations of $\{1, 2, ..., n\}$.

• Homeo(\mathbb{R}): the group of all invertible functions $f : \mathbb{R} \to \mathbb{R}$ such that both f and f^{-1} are continuous (such functions are called **homeomorphisms**).

• $\operatorname{Homeo}^+(\mathbb{R})$: the group of all increasing functions in $\operatorname{Homeo}(\mathbb{R})$ (i.e., those that preserve orientation of the real line).

• Diff(\mathbb{R}): the group of all invertible functions $f : \mathbb{R} \to \mathbb{R}$ such that both f and f^{-1} are continuously differentiable (such functions are called **diffeomorphisms**).

Groups of symmetries

Definition. A transformation $f : \mathbb{R}^n \to \mathbb{R}^n$ is called a **motion** (or a **rigid motion**) if it preserves distances between points.

Theorem All motions of \mathbb{R}^n form a transformation group. Any motion $f : \mathbb{R}^n \to \mathbb{R}^n$ can be represented as $f(\mathbf{x}) = A\mathbf{x} + \mathbf{x}_0$, where $\mathbf{x}_0 \in \mathbb{R}^n$ and A is an orthogonal matrix.

Given a geometric figure $F \subset \mathbb{R}^n$, a **symmetry** of F is a motion of \mathbb{R}^n that preserves F. All symmetries of F form a transformation group.

The **dihedral group** D(n) is the group of symmetries of a regular *n*-gon. It consists of 2n elements: *n* reflections, n-1 rotations by angles $2\pi k/n$, k = 1, 2, ..., n-1, and the identity function.

Equlateral triangle

Any symmetry of a polygon maps vertices to vertices. Therefore it induces a permutation on the set of vertices. Moreover, the symmetry is uniquely recovered from the permutation.

In the case of the equilateral triangle, any permutation of vertices comes from a symmetry.

Square

In the case of the square, not every permutation of vertices comes from a symmetry of the square. The reason is that a symmetry must map adjacent vertices to adjacent vertices.

Regular tetrahedron

Any symmetry of a polyhedron maps vertices to vertices. In the case of the regular tetrahedron, any permutation of vertices comes from a symmetry.

Matrix groups

A group is called **linear** if its elements are $n \times n$ matrices and the group operation is matrix multiplication.

• General linear group $GL(n, \mathbb{R})$ consists of all $n \times n$ matrices that are invertible (i.e., with nonzero determinant). The identity element is $I = \text{diag}(1, 1, \dots, 1)$.

• Special linear group $SL(n, \mathbb{R})$ consists of all $n \times n$ matrices with determinant 1.

Closed under multiplication since det(AB) = det(A) det(B). Also, $det(A^{-1}) = (det(A))^{-1}$.

• Orthogonal group $O(n, \mathbb{R})$ consists of all orthogonal $n \times n$ matrices $(A^T A = A A^T = I)$.

• Special orthogonal group $SO(n, \mathbb{R})$ consists of all orthogonal $n \times n$ matrices with determinant 1. $SO(n, \mathbb{R}) = O(n, \mathbb{R}) \cap SL(n, \mathbb{R}).$