MATH 433 Applied Algebra Lecture 22: Semigroups. Rings.

Groups

Definition. A **group** is a set G, together with a binary operation *, that satisfies the following axioms:

(G1: closure)

for all elements g and h of G, g * h is an element of G;

(G2: associativity)

(g * h) * k = g * (h * k) for all $g, h, k \in G$;

(G3: existence of identity)

there exists an element $e \in G$, called the **identity** (or **unit**) of G, such that e * g = g * e = g for all $g \in G$;

(G4: existence of inverse)

for every $g \in G$ there exists an element $h \in G$, called the **inverse** of g, such that g * h = h * g = e.

The group (G, *) is said to be **commutative** (or **Abelian**) if it satisfies an additional axiom:

(G5: commutativity) g * h = h * g for all $g, h \in G$.

Semigroups

Definition. A **semigroup** is a nonempty set S, together with a binary operation *, that satisfies the following axioms:

(S1: closure)

for all elements g and h of S, g * h is an element of S;

(S2: associativity) (g * h) * k = g * (h * k) for all $g, h, k \in S$.

The semigroup (S, *) is said to be a **monoid** if it satisfies an additional axiom:

(S3: existence of identity) there exists an element $e \in S$ such that e * g = g * e = g for all $g \in S$.

Additional useful properties of semigroups:

(S4: cancellation) $g * h_1 = g * h_2$ implies $h_1 = h_2$ and $h_1 * g = h_2 * g$ implies $h_1 = h_2$ for all $g, h_1, h_2 \in S$. (S5: commutativity) g * h = h * g for all $g, h \in S$.

Examples of semigroups

- Real numbers ${\mathbb R}$ with multiplication (commutative monoid).
- Positive integers with addition (commutative semigroup with cancellation).
- Positive integers with multiplication (commutative monoid with cancellation).
- Given a set X, all functions $f : X \to X$ with composition (monoid).
- All $n \times n$ matrices with multiplication (monoid).
- Invertible $n \times n$ matrices with integer entries, with multiplication (monoid with cancellation).
- All subsets of a set X with the operation $A * B = A \cup B$ (commutative monoid).
- Positive integers with the operation $a * b = \max(a, b)$ (commutative monoid).

Examples of semigroups

• Given a finite alphabet X, the set X^* of all finite words in X with the operation of concatenation.

If $w_1 = a_1 a_2 \dots a_n$ and $w_2 = b_1 b_2 \dots b_k$, then $w_1 w_2 = a_1 a_2 \dots a_n b_1 b_2 \dots b_k$. This is a monoid with cancellation. The identity element is the empty word.

• The set S(X) of all automaton transformations over an alphabet X with composition.

Any transducer automaton with the input/output alphabet X generates a transformation $f: X^* \to X^*$ by the rule f(input-word) = output-word. It turns out that the composition of two transformations generated by finite state automata is also generated by a finite state automaton.

Theorem Any finite semigroup with cancellation is actually a group.

Lemma If S is a finite semigroup with cancellation, then for any $s \in S$ there exists an integer $k \ge 2$ such that $s^k = s$.

Proof: Since S is finite, the sequence s, s^2, s^3, \ldots contains repetitions, i.e., $s^k = s^m$ for some $k > m \ge 1$. If m = 1 then we are done. If m > 1 then $s^{m-1}s^{k-m+1} = s^{m-1}s$, which implies $s^{k-m+1} = s$.

Proof of the theorem: Take any $s \in S$. By Lemma, we have $s^k = s$ for some $k \ge 2$. Then $e = s^{k-1}$ is the identity element. Indeed, for any $g \in S$ we have $s^kg = sg$ or, equivalently, s(eg) = sg. After cancellation, eg = g. Similarly, ge = g for all $g \in S$. Finally, for any $g \in S$ there is $n \ge 2$ such that $g^n = g = ge$. Then $g^{n-1} = e$, which implies that $g^{n-2} = g^{-1}$.

Rings

Definition. A ring is a set R, together with two binary operations usually called **addition** and **multiplication** and denoted accordingly, such that

- *R* is an Abelian group under addition,
- *R* is a semigroup under multiplication,
- multiplication distributes over addition.

The complete list of axioms is as follows: (R1) for all $x, y \in R$, x + y is an element of R; (R2) (x + y) + z = x + (y + z) for all $x, y, z \in R$; **(R3)** there exists an element, denoted 0, in R such that x + 0 = 0 + x = x for all $x \in R$: **(R4)** for every $x \in R$ there exists an element, denoted -x, in R such that x + (-x) = (-x) + x = 0; (R5) x + y = y + x for all $x, y \in R$; (R6) for all $x, y \in R$, xy is an element of R; (R7) (xy)z = x(yz) for all $x, y, z \in R$; (R8) x(y+z) = xy+xz and (y+z)x = yx+zx for all $x, y, z \in R$.

Examples of rings

In most examples, addition and multiplication are naturally defined and verification of the axioms is straightforward.

- Real numbers \mathbb{R} .
- Integers \mathbb{Z} .
- $2\mathbb{Z}$: even integers.
- \mathbb{Z}_n : congruence classes modulo n.
- $\mathcal{M}_n(\mathbb{R})$: all $n \times n$ matrices with real entries.
- $\mathcal{M}_n(\mathbb{Z})$: all $n \times n$ matrices with integer entries.
- $\mathbb{R}[X]$: polynomials in variable X with real coefficients.
- $\mathbb{R}(X)$: rational functions in variable X with real coefficients.
- All functions $f : \mathbb{R} \to \mathbb{R}$.
- **Zero ring**: any additive Abelian group with trivial multiplication: xy = 0 for all x and y.
 - Trivial ring $\{0\}$.

Zero-divisors

Theorem Let R be a ring. Then x0 = 0x = 0 for all $x \in R$. *Proof:* Let y = x0. Then y + y = x0 + x0 = x(0 + 0) = x0 = y. It follows that (-y) + y + y = (-y) + y, hence y = 0. Similarly, one shows that 0x = 0.

A nonzero element x of a ring R is a **left zero-divisor** if xy = 0 for another nonzero element $y \in R$. The element y is called a **right zero-divisor**.

Examples. • In the ring \mathbb{Z}_6 , the zero-divisors are congruence classes $[2]_6$, $[3]_6$, and $[4]_6$, as $[2]_6[3]_6 = [4]_6[3]_6 = [0]_6$.

• In the ring $\mathcal{M}_n(\mathbb{R})$, the zero-divisors (both left and right) are nonzero matrices with zero determinant. For instance, $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. • In any zero ring, all nonzero elements are zero-divisors.