MATH 433
Applied Algebra
Lecture 22:
Semigroups.
Rings.

Groups

Definition. A group is a set G, together with a binary operation $*$, that satisfies the following axioms:
(G1: closure)
for all elements g and h of $G, g * h$ is an element of G;
(G2: associativity)
$(g * h) * k=g *(h * k)$ for all $g, h, k \in G$;
(G3: existence of identity)
there exists an element $e \in G$, called the identity (or unit) of G, such that $e * g=g * e=g$ for all $g \in G$;
(G4: existence of inverse)
for every $g \in G$ there exists an element $h \in G$, called the inverse of g, such that $g * h=h * g=e$.
The group $(G, *)$ is said to be commutative (or Abelian) if it satisfies an additional axiom:
(G5: commutativity) $g * h=h * g$ for all $g, h \in G$.

Semigroups

Definition. A semigroup is a nonempty set S, together with a binary operation $*$, that satisfies the following axioms:
(S1: closure)
for all elements g and h of $S, g * h$ is an element of S;
(S2: associativity)
$(g * h) * k=g *(h * k)$ for all $g, h, k \in S$.
The semigroup $(S, *)$ is said to be a monoid if it satisfies an additional axiom:
(S3: existence of identity) there exists an element $e \in S$ such that $e * g=g * e=g$ for all $g \in S$.
Additional useful properties of semigroups:
(S4: cancellation) $g * h_{1}=g * h_{2}$ implies $h_{1}=h_{2}$ and $h_{1} * g=h_{2} * g$ implies $h_{1}=h_{2}$ for all $g, h_{1}, h_{2} \in S$.
(S5: commutativity) $g * h=h * g$ for all $g, h \in S$.

Examples of semigroups

- Real numbers \mathbb{R} with multiplication (commutative monoid).
- Positive integers with addition (commutative semigroup with cancellation).
- Positive integers with multiplication (commutative monoid with cancellation).
- Given a set X, all functions $f: X \rightarrow X$ with composition (monoid).
- All $n \times n$ matrices with multiplication (monoid).
- Invertible $n \times n$ matrices with integer entries, with multiplication (monoid with cancellation).
- All subsets of a set X with the operation $A * B=A \cup B$ (commutative monoid).
- Positive integers with the operation $a * b=\max (a, b)$ (commutative monoid).

Examples of semigroups

- Given a finite alphabet X, the set X^{*} of all finite words in X with the operation of concatenation.
If $w_{1}=a_{1} a_{2} \ldots a_{n}$ and $w_{2}=b_{1} b_{2} \ldots b_{k}$, then $w_{1} w_{2}=a_{1} a_{2} \ldots a_{n} b_{1} b_{2} \ldots b_{k}$. This is a monoid with cancellation. The identity element is the empty word.
- The set $S(X)$ of all automaton transformations over an alphabet X with composition.
Any transducer automaton with the input/output alphabet X generates a transformation $f: X^{*} \rightarrow X^{*}$ by the rule $f($ input-word $)=$ output-word. It turns out that the composition of two transformations generated by finite state automata is also generated by a finite state automaton.

Theorem Any finite semigroup with cancellation is actually a group.

Lemma If S is a finite semigroup with cancellation, then for any $s \in S$ there exists an integer $k \geq 2$ such that $s^{k}=s$.
Proof: Since S is finite, the sequence s, s^{2}, s^{3}, \ldots contains repetitions, i.e., $s^{k}=s^{m}$ for some $k>m \geq 1$. If $m=1$ then we are done. If $m>1$ then $s^{m-1} s^{k-m+1}=s^{m-1} s$, which implies $s^{k-m+1}=s$.

Proof of the theorem: Take any $s \in S$. By Lemma, we have $s^{k}=s$ for some $k \geq 2$. Then $e=s^{k-1}$ is the identity element. Indeed, for any $g \in S$ we have $s^{k} g=s g$ or, equivalently, $s(e g)=s g$. After cancellation, $e g=g$. Similarly, $g e=g$ for all $g \in S$. Finally, for any $g \in S$ there is $n \geq 2$ such that $g^{n}=g=g e$. Then $g^{n-1}=e$, which implies that $g^{n-2}=g^{-1}$.

Rings

Definition. A ring is a set R, together with two binary operations usually called addition and multiplication and denoted accordingly, such that

- R is an Abelian group under addition,
- R is a semigroup under multiplication,
- multiplication distributes over addition.

The complete list of axioms is as follows:
(R1) for all $x, y \in R, \quad x+y$ is an element of R;
(R2) $(x+y)+z=x+(y+z)$ for all $x, y, z \in R$;
(R3) there exists an element, denoted 0 , in R such that
$x+0=0+x=x$ for all $x \in R$;
(R4) for every $x \in R$ there exists an element, denoted $-x$, in R such that $x+(-x)=(-x)+x=0$;
(R5) $x+y=y+x$ for all $x, y \in R$;
(R6) for all $x, y \in R, \quad x y$ is an element of R;
(R7) $(x y) z=x(y z)$ for all $x, y, z \in R$;
(R8) $x(y+z)=x y+x z$ and $(y+z) x=y x+z x$ for all $x, y, z \in R$.

Examples of rings

In most examples, addition and multiplication are naturally defined and verification of the axioms is straightforward.

- Real numbers \mathbb{R}.
- Integers \mathbb{Z}.
- $2 \mathbb{Z}$: even integers.
- \mathbb{Z}_{n} : congruence classes modulo n.
- $\mathcal{M}_{n}(\mathbb{R})$: all $n \times n$ matrices with real entries.
- $\mathcal{M}_{n}(\mathbb{Z})$: all $n \times n$ matrices with integer entries.
- $\mathbb{R}[X]$: polynomials in variable X with real coefficients.
- $\mathbb{R}(X)$: rational functions in variable X with real coefficients.
- All functions $f: \mathbb{R} \rightarrow \mathbb{R}$.
- Zero ring: any additive Abelian group with trivial multiplication: $x y=0$ for all x and y.
- Trivial ring $\{0\}$.

Zero-divisors

Theorem Let R be a ring. Then $x 0=0 x=0$ for all $x \in R$.
Proof: Let $y=x 0$. Then $y+y=x 0+x 0=x(0+0)$ $=x 0=y$. It follows that $(-y)+y+y=(-y)+y$, hence $y=0$. Similarly, one shows that $0 x=0$.

A nonzero element x of a ring R is a left zero-divisor if $x y=0$ for another nonzero element $y \in R$. The element y is called a right zero-divisor.

Examples. - In the ring \mathbb{Z}_{6}, the zero-divisors are congruence classes $[2]_{6},[3]_{6}$, and $[4]_{6}$, as $[2]_{6}[3]_{6}=[4]_{6}[3]_{6}=[0]_{6}$.

- In the ring $\mathcal{M}_{n}(\mathbb{R})$, the zero-divisors (both left and right) are nonzero matrices with zero determinant. For instance, $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right), \quad\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)^{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
- In any zero ring, all nonzero elements are zero-divisors.

