
MATH 433

Applied Algebra

Lecture 23:
Fields.

Vector spaces over a field.



Groups

Definition. A group is a set G , together with a binary
operation ∗, that satisfies the following axioms:

(G1: closure)
for all elements g and h of G , g ∗ h is an element of G ;

(G2: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ G ;

(G3: existence of identity)
there exists an element e ∈ G , called the identity (or unit)
of G , such that e ∗ g = g ∗ e = g for all g ∈ G ;

(G4: existence of inverse)
for every g ∈ G there exists an element h ∈ G , called the
inverse of g , such that g ∗ h = h ∗ g = e.

The group (G , ∗) is said to be commutative (or Abelian) if
it satisfies an additional axiom:

(G5: commutativity) g ∗ h = h ∗ g for all g , h ∈ G .



Semigroups

Definition. A semigroup is a nonempty set S , together with
a binary operation ∗, that satisfies the following axioms:

(S1: closure)
for all elements g and h of S , g ∗ h is an element of S ;

(S2: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ S .

The semigroup (S , ∗) is said to be a monoid if it satisfies an
additional axiom:

(S3: existence of identity) there exists an element e ∈ S
such that e ∗ g = g ∗ e = g for all g ∈ S .

Additional useful properties of semigroups:

(S4: cancellation) g ∗ h1 = g ∗ h2 implies h1 = h2 and
h1 ∗ g = h2 ∗ g implies h1 = h2 for all g , h1, h2 ∈ S .

(S5: commutativity) g ∗ h = h ∗ g for all g , h ∈ S .



Rings

Definition. A ring is a set R , together with two binary
operations usually called addition and multiplication and
denoted accordingly, such that
• R is an Abelian group under addition,
• R is a semigroup under multiplication,
• multiplication distributes over addition.

The complete list of axioms is as follows:
(R1) for all x , y ∈ R , x + y is an element of R ;
(R2) (x + y) + z = x + (y + z) for all x , y , z ∈ R ;
(R3) there exists an element, denoted 0, in R such that
x + 0 = 0 + x = x for all x ∈ R ;
(R4) for every x ∈ R there exists an element, denoted −x , in R

such that x + (−x) = (−x) + x = 0;
(R5) x + y = y + x for all x , y ∈ R ;
(R6) for all x , y ∈ R , xy is an element of R ;
(R7) (xy)z = x(yz) for all x , y , z ∈ R ;
(R8) x(y+z) = xy+xz and (y+z)x = yx+zx for all x , y , z ∈ R .



Examples of rings

• Real numbers R.

• Integers Z.

• 2Z: even integers.

• Zn: congruence classes modulo n.

• Mn(R): all n×n matrices with real entries.

• Mn(Z): all n×n matrices with integer entries.

• Mn(R): all n×n matrices with entries from a ring R .

• R[X ]: polynomials in variable X with real coefficients.

• Z[X ]: polynomials in variable X with integer coefficients.

• R[X ]: polynomials in variable X with coefficients from a
ring R .

• R(X ): rational functions in variable X with real coefficients.

• All functions f : R → R.



Integral domains

A ring R is called a domain if it has no zero-divisors, that is,
xy = 0 implies x = 0 or y = 0.

Theorem Given a nontrivial ring R , the following are
equivalent: • R is a domain,
• R \ {0} is a semigroup under multiplication,
• R \ {0} is a semigroup with cancellation under

multiplication.

Idea of the proof: No zero-divisors means that R \ {0} is
closed under multiplication. Further, if a 6= 0 then ab = ac
=⇒ a(b − c) = 0 =⇒ b − c = 0 =⇒ b = c.

A ring R is called commutative if the multiplication is
commutative. R is called a ring with identity if there exists
an identity element for multiplication (denoted 1).

An integral domain is a nontrivial commutative ring with
identity and no zero-divisors.



Fields

Definition. A field is a set F , together with two binary
operations called addition and multiplication and denoted
accordingly, such that

• F is an Abelian group under addition,
• F \ {0} is an Abelian group under multiplication,
• multiplication distributes over addition.

In other words, the field is a commutative ring with identity
(1 6= 0) such that any nonzero element has a multiplicative
inverse.

Examples. • Real numbers R.

• Rational numbers Q.

• Complex numbers C.

• Zp: congruence classes modulo p, where p is prime.

• R(X ): rational functions in variable X with real coefficients.



Example. Let M be the set of all 2× 2 matrices of the form
(

n −k
k n

)

, where n and k are integers.
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Hence M is closed under matrix addition, taking the negative,
and matrix multiplication. Also, the multiplication is
commutative on M . The associativity and commutativity of
the addition, the associativity of the multiplication, and the
distributive law hold on M since they hold for all 2× 2
matrices. Thus M is a commutative ring. However M is not
a field since 2I ∈ M is not invertible in M .



Quotient field

Theorem A ring R with identity can be extended

to a field if and only if it is an integral domain.

If R is an integral domain, then there is a smallest
field F containing R called the quotient field of R.

Any element of F is of the form b−1a, where
a, b ∈ R.

Examples. • The quotient field of Z is Q.

• The quotient field of R[X ] is R(X ).



Vector spaces over a field

Definition. Given a field F , a vector space V over F is an
additive Abelian group endowed with an action of F called
scalar multiplication or scaling.

An action of F on V is an operation that takes elements
λ ∈ F and v ∈ V and gives an element, denoted λv , of V .

The scalar multiplication is to satisfy the following axioms:

(V1) for all v ∈ V and λ ∈ F , λv is an element of V ;
(V2) λ(µv ) = (λµ)v for all v ∈ V and λ, µ ∈ F ;
(V3) 1v = v for all v ∈ V ;
(V4) (λ+ µ)v = λv + µv for all v ∈ V and λ, µ ∈ F ;
(V5) λ(v + w) = λv + λw for all v ,w ∈ V and λ ∈ F .

(Almost) all linear algebra developed for vector spaces over R
can be generalized to vector spaces over an arbitrary field F .
This includes: linear independence, span, basis, dimension,
linear operators, matrices, eigenvalues and eigenvectors.



Examples. • R is a vector space over Q.
• C is a vector space over R and over Q.

Counterexample (lazy scaling). Consider the

Abelian group V = Rn with a nonstandard scalar
multiplication over R:

r ⊙ a = a for any a ∈ Rn and r ∈ R.

V1. r ⊙ a = a ∈ V
V2. (rs)⊙ a = r ⊙ (s ⊙ a) ⇐⇒ a = a

V3. 1⊙ a = a ⇐⇒ a = a
V4. (r + s)⊙ a = r ⊙ a+ s ⊙ a ⇐⇒ a = a+ a

V5. r ⊙ (a+ b) = r ⊙ a+ r ⊙ b ⇐⇒ a+ b = a+ b

The only axiom that fails is V4.


