MATH 433 Applied Algebra Lecture 25:

Review for Exam 2.

Topics for Exam 2

- Relations, properties of relations
- Finite state machines, automata
- Permutations
- Cycles, transpositions
- Cycle decomposition of a permutation
- Order of a permutation
- Sign of a permutation
- Symmetric and alternating groups
- Abstract groups (definition and examples)
- Semigroups
- Rings, zero-divisors
- Fields, characteristic of a field
- Vector spaces over a field
- Algebras over a field

What you are supposed to remember

- Definition of a permutation, a cycle, and a transposition
- Theorem on cycle decomposition
- Definition of the order of a permutation
- How to find the order for a product of disjoint cycles
- Definition of even and odd permutations
- Definition of a group
- Definition of a semigroup
- Definition of a ring
- Definition of a field
- Definition of a vector space over a field

Problem 1. Let *R* be a relation defined on the set of positive integers by xRy if and only if $gcd(x, y) \neq 1$ ("is not coprime with"). Is this relation reflexive? Symmetric? Transitive?

Problem 2. A Moore diagram below depicts a 3-state acceptor automaton over the alphabet $\{a, b\}$ which accepts those input words that do not contain a subword *ab* (and rejects any input word containing a subword *ab*). Prove that no 2-state automaton can perform the same task.

Problem 3. List all cycles of length 3 in the symmetric group S(4). Make sure there are no repetitions in your list.

Problem 4. Write the permutation $\pi = (4 \ 5 \ 6)(3 \ 4 \ 5)(1 \ 2 \ 3)$ as a product of disjoint cycles.

Problem 5. Find the order and the sign of the permutation $\sigma = (1\ 2)(3\ 4\ 5\ 6)(1\ 2\ 3\ 4)(5\ 6)$.

Problem 6. What is the largest possible order of an element of the alternating group A(10)?

Problem 7. Consider the operation * defined on the set \mathbb{Z} of integers by a * b = a + b - 2. Does this operation provide the integers with a group structure?

Problem 8. Let *M* be the set of all 2×2 matrices of the form $\begin{pmatrix} n & k \\ 0 & n \end{pmatrix}$, where *n* and *k* are rational numbers. Under the operations of matrix addition and multiplication, does this set form a ring? Does *M* form a field?

Problem 9. Let *L* be the set of the following 2×2 matrices with entries from the field \mathbb{Z}_2 :

$$A = \begin{pmatrix} [0] & [0] \\ [0] & [0] \end{pmatrix}, \quad B = \begin{pmatrix} [1] & [0] \\ [0] & [1] \end{pmatrix},$$
$$C = \begin{pmatrix} [1] & [1] \\ [1] & [0] \end{pmatrix}, \quad D = \begin{pmatrix} [0] & [1] \\ [1] & [1] \end{pmatrix}.$$

Under the operations of matrix addition and multiplication, does this set form a ring? Does *L* form a field?

Problem 10. For any $\lambda \in \mathbb{Q}$ and any $v \in \mathbb{Z}$ let $\lambda \odot v = \lambda v$ if λv is an integer and $\lambda \odot v = v$ otherwise. Does this "selective scaling" make the additive Abelian group \mathbb{Z} into a vector space over the field \mathbb{Q} ?

Problem 1. Let *R* be a relation defined on the set of positive integers by xRy if and only if $gcd(x, y) \neq 1$ ("is not coprime with"). Is this relation reflexive? Symmetric? Transitive?

The relation R is not reflexive since 1 is not related to itself (actually, this is the only positive integer not related to itself by R).

The relation is symmetric since gcd(x, y) = gcd(y, x) for all $x, y \in \mathbb{P}$.

The relation is not transitive as the following counterexample shows: 2R6 and 6R3, but 2 is not related to 3 by R.

Problem 2. A Moore diagram below depicts a 3-state acceptor automaton over the alphabet $\{a, b\}$ which accepts those input words that do not contain a subword *ab*. Prove that no 2-state automaton can perform the same task.

Assume the contrary: there is an automaton with two states 0 (initial) and 1 that does the job. We are going to reconstruct its transition function t.

Claim 1: t(0, a) = 1. Otherwise t(0, a) = 0, then we would not be able to distinguish inputs *b* and *ab*.

Claim 2: t(0, b) = 0. Otherwise t(0, b) = 1, then we would not be able to tell the input *bb* from *ab*.

Claim 3: t(1, a) = 1 (otherwise we would not tell *b* from *aab*). **Claim 4**: t(1, b) = 0 (otherwise we would not tell *aa* from *ab*). We still cannot distinguish *bb* from *ab*, a contradiction anyway. **Problem 3.** List all cycles of length 3 in the symmetric group S(4). Make sure there are no repetitions in your list.

Any cycle of length 3 in S(4) moves 3 elements and fixes the remaining one. Therefore there are 4 ways to choose three elements a, b, c moved by such a cycle. For any choice of these, there are two cycles of length 3 moving a, b, c, each written in three different ways: $(a \ b \ c) = (b \ c \ a) = (c \ a \ b)$ and $(a \ c \ b) = (b \ a \ c) = (c \ b \ a).$ The list: (1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4),

(1 4 3), (2 3 4), (2 4 3).

Problem 4. Write the permutation $\pi = (4 \ 5 \ 6)(3 \ 4 \ 5)(1 \ 2 \ 3)$ as a product of disjoint cycles.

Keeping in mind that the composition is evaluated from the right to the left, we find that $\pi(1) = 2$, $\pi(2) = 5$, $\pi(5) = 3$, and $\pi(3) = 1$. Further, $\pi(4) = 6$ and $\pi(6) = 4$. Thus $\pi = (1\ 2\ 5\ 3)(4\ 6)$.

Problem 5. Find the order and the sign of the permutation $\sigma = (1 \ 2)(3 \ 4 \ 5 \ 6)(1 \ 2 \ 3 \ 4)(5 \ 6)$.

First we find the cycle decomposition of the given permutation: $\sigma = (2 \ 4)(3 \ 5)$. It follows that the order of σ is 2 and that σ is an even permutation. Therefore the sign of σ is +1.

Problem 6. What is the largest possible order of an element of the alternating group A(10)?

The order of a permutation π is $o(\pi) = \text{lcm}(l_1, l_2, ..., l_k)$, where $l_1, ..., l_k$ are lengths of cycles in the disjoint cycle decomposition of π .

The largest order for $\pi \in A(10)$, an even permutation of 10 elements, is 21. It is attained when π is the product of disjoint cycles of lengths 7 and 3, for example, $\pi = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7)(8 \ 9 \ 10)$. One can check that in all other cases the order is at most 15.

Remark. The largest order for $\pi \in S(10)$ is 30, but it is attained on odd permutations, e.g., $\pi = (1 \ 2 \ 3 \ 4 \ 5)(6 \ 7 \ 8)(9 \ 10).$

Problem 7. Consider the operation * defined on the set \mathbb{Z} of integers by a * b = a + b - 2. Does this operation provide the integers with a group structure?

We need to check 4 axioms.

Closure: $a, b \in \mathbb{Z} \implies a * b = a + b - 2 \in \mathbb{Z}$. **Associativity:** for any $a, b, c \in \mathbb{Z}$, we have (a * b) * c = (a + b - 2) * c = (a + b - 2) + c - 2 = a + b + c - 4a*(b*c) = a*(b+c-2) = a+(b+c-2)-2 = a+b+c-4hence (a * b) * c = a * (b * c). **Existence of identity:** equalities a * e = e * a = a are equivalent to e + a - 2 = a. They hold for e = 2. **Existence of inverse:** equalities a * b = b * a = e are equivalent to b + a - 2 = e (= 2). They hold for b = 4 - a. Thus $(\mathbb{Z}, *)$ is a group.

Remark. Consider a bijection $f : \mathbb{Z} \to \mathbb{Z}$, f(a) = a - 2. Then f(a * b) = f(a) + f(b) for all $a, b \in \mathbb{Z}$. **Problem 8.** Let *M* be the set of all 2×2 matrices of the form $\begin{pmatrix} n & k \\ 0 & n \end{pmatrix}$, where *n* and *k* are rational numbers. Under the operations of matrix addition and multiplication, does this set form a ring? Does *M* form a field?

The set M is closed under matrix addition, taking the negative, and matrix multiplication as

$$\begin{pmatrix} n & k \\ 0 & n \end{pmatrix} + \begin{pmatrix} n' & k' \\ 0 & n' \end{pmatrix} = \begin{pmatrix} n+n' & k+k' \\ 0 & n+n' \end{pmatrix},$$
$$- \begin{pmatrix} n & k \\ 0 & n \end{pmatrix} = \begin{pmatrix} -n & -k \\ 0 & -n \end{pmatrix},$$
$$\begin{pmatrix} n & k \\ 0 & n \end{pmatrix} \begin{pmatrix} n' & k' \\ 0 & n' \end{pmatrix} = \begin{pmatrix} nn' & nk'+kn' \\ 0 & nn' \end{pmatrix}.$$

Also, the multiplication is commutative on M. The associativity and commutativity of the addition, the associativity of the multiplication, and the distributive law hold on M since they hold for all 2×2 matrices. Thus M is a commutative ring. **Problem 8.** Let *M* be the set of all 2×2 matrices of the form $\begin{pmatrix} n & k \\ 0 & n \end{pmatrix}$, where *n* and *k* are rational numbers. Under the operations of matrix addition and multiplication, does this set form a ring? Does *M* form a field?

The ring M is not a field since it has zero-divisors (and zero-divisors do not admit multiplicative inverses). For example, the matrix $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in M$ is a zero-divisor as

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Problem 9. Let *L* be the set of the following 2×2 matrices with entries from the field \mathbb{Z}_2 :

 $A = \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, B = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = \begin{pmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, D = \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{pmatrix}.$ Under the operations of matrix addition and multiplication, does this set form a ring? Does *L* form a field?

First we build the addition and mutiplication tables for L (meanwhile checking that L is closed under both operations):

+	A	В	С	D
Α	A	В	С	D
В	В	Α	D	С
С	С	D	Α	В
D	D	С	В	Α

\times	Α	В	С	D
Α	A	Α	Α	Α
В	A	В	С	D
С	A	С	D	В
D	A	D	В	С

Analyzing these tables, we find that both operations are commutative on *L*, *A* is the additive identity element, and *B* is the multiplicative identity element. Also, $B^{-1} = B$, $C^{-1} = D$, $D^{-1} = C$, and -X = X for all $X \in L$. The associativity of addition and multiplication as well as the distributive law hold on *L* since they hold for all 2×2 matrices. Thus *L* is a field. **Problem 10.** For any $\lambda \in \mathbb{Q}$ and any $v \in \mathbb{Z}$ let $\lambda \odot v = \lambda v$ if λv is an integer and $\lambda \odot v = v$ otherwise. Does this "selective scaling" make the additive Abelian group \mathbb{Z} into a vector space over the field \mathbb{Q} ?

The group $(\mathbb{Z}, +)$ with the scalar multiplication \odot is not a vector space over \mathbb{Q} . One reason is that the axiom $\lambda \odot (\mu \odot \mathbf{v}) = (\lambda \mu) \odot \mathbf{v}$ does not hold.

A counterexample is $\lambda = 2$, $\mu = 1/2$, and v = 1. Then $\lambda \odot (\mu \odot v) = \lambda \odot v = 2$ while $(\lambda \mu) \odot v = 1 \odot v = 1$.