Lecture 26: Order of an element in a group.

MATH 433

Applied Algebra

Subgroups.

Groups

Definition. A **group** is a set G, together with a binary operation *, that satisfies the following axioms:

(G1: closure)

for all elements g and h of G, g*h is an element of G;

(G2: associativity)

$$(g*h)*k = g*(h*k)$$
 for all $g,h,k \in G$;

(G3: existence of identity)

there exists an element $e \in G$, called the **identity** (or **unit**) of G, such that e * g = g * e = g for all $g \in G$;

(G4: existence of inverse)

for every $g \in G$ there exists an element $h \in G$, called the **inverse** of g, such that g * h = h * g = e.

The group (G, *) is said to be **commutative** (or **Abelian**) if it satisfies an additional axiom:

(G5: commutativity) g * h = h * g for all $g, h \in G$.

Basic properties of groups

- The identity element is unique.
- The inverse element is unique.
- $(g^{-1})^{-1} = g$. In other words, $h = g^{-1}$ if and only if $g = h^{-1}$.
 - $(gh)^{-1} = h^{-1}g^{-1}$.
 - $(g_1g_2...g_n)^{-1}=g_n^{-1}...g_2^{-1}g_1^{-1}.$
- Cancellation properties: $gh_1 = gh_2 \implies h_1 = h_2$ and $h_1g = h_2g \implies h_1 = h_2$ for all $g, h_1, h_2 \in G$.

Indeed, $gh_1 = gh_2 \implies g^{-1}(gh_1) = g^{-1}(gh_2)$ $\implies (g^{-1}g)h_1 = (g^{-1}g)h_2 \implies eh_1 = eh_2 \implies h_1 = h_2.$ Similarly, $h_1g = h_2g \implies h_1 = h_2.$

Equations in groups

Theorem Let G be a group. For any $a, b, c \in G$,

- the equation ax = b has a unique solution $x = a^{-1}b$;
- the equation ya = b has a unique solution $y = ba^{-1}$;
- the equation azc = b has a unique solution $z = a^{-1}bc^{-1}$.

Problem. Solve an equation in the group S(5): $(1\ 2\ 4)(3\ 5)\pi(2\ 3\ 4\ 5)=(1\ 5)$.

Solution:
$$\pi = ((1\ 2\ 4)(3\ 5))^{-1}(1\ 5)(2\ 3\ 4\ 5)^{-1}$$

= $(3\ 5)^{-1}(1\ 2\ 4)^{-1}(1\ 5)(2\ 3\ 4\ 5)^{-1}$
= $(5\ 3)(4\ 2\ 1)(1\ 5)(5\ 4\ 3\ 2) = (1\ 3)(2\ 4\ 5)$.

Powers of an element

Let g be an element of a group G. The positive **powers** of g are defined inductively:

$$g^1 = g$$
 and $g^{k+1} = g \cdot g^k$ for every integer $k \ge 1$.

The negative powers of g are defined as the positive powers of its inverse: $g^{-k} = (g^{-1})^k$ for every positive integer k. Finally, we set $g^0 = e$.

Theorem Let g be an element of a group G and $r, s \in \mathbb{Z}$. Then

(i)
$$g^r g^s = g^{r+s}$$
,
(ii) $(g^r)^s = g^{rs}$,
(iii) $(g^r)^{-1} = g^{-r}$.

Idea of the proof: First one proves the theorem for positive r, s by induction (induction on r for (i) and (iii), induction on s for (ii)). Then the general case is reduced to the case of positive r, s.

Order of an element

Let g be an element of a group G. We say that g has **finite** order if $g^n = e$ for some positive integer n.

If this is the case, then the smallest positive integer n with this property is called the **order** of g and denoted o(g).

Otherwise g is said to have the **infinite order**, $o(g) = \infty$.

Theorem If G is a finite group, then every element of G has finite order.

Proof: Let $g \in G$ and consider the list of powers: g, g^2, g^3, \ldots . Since all elements in this list belong to the finite set G, there must be repetitions within the list. Assume that $g^r = g^s$ for some 0 < r < s. Then $g^r e = g^r g^{s-r}$ $\implies g^{s-r} = e$ due to the cancellation property.

Theorem 1 Let G be a group and $g \in G$ be an element of finite order n. Then $g^r = g^s$ if and only if $r \equiv s \mod n$. In particular, $g^r = e$ if and only if the order n divides r.

Theorem 2 Let G be a group and $g \in G$ be an element of infinite order. Then $g^r \neq g^s$ whenever $r \neq s$.

Theorem 3 Let g and h be two commuting elements of a group G: gh = hg. Then

- (i) the powers g^r and h^s commute for all $r, s \in \mathbb{Z}$,
- (ii) $(gh)^r = g^r h^r$ for all $r \in \mathbb{Z}$.

Theorem 4 Let G be a group and $g, h \in G$ be two commuting elements of finite order. Then gh also has a finite order. Moreover, o(gh) divides lcm(o(g), o(h)).

Examples

• G = S(10), $g = (1 \ 2 \ 3 \ 4 \ 5 \ 6)$, $h = (7 \ 8 \ 9 \ 10)$.

g and h are disjoint cycles, in particular, gh = hg. We have o(g) = 6, o(h) = 4, and o(gh) = lcm(o(g), o(h)) = 12.

• G = S(6), $g = (1 \ 2 \ 3 \ 4 \ 5 \ 6)$, $h = (1 \ 3 \ 5)(2 \ 4 \ 6)$.

Notice that $h = g^2$. Hence $gh = hg = g^3 = (1 \ 4)(2 \ 5)(3 \ 6)$. We have o(g) = 6, o(h) = 3, and o(gh) = 2 < lcm(o(g), o(h)).

• G = S(5), $g = (1 \ 2 \ 3)$, $h = (3 \ 4 \ 5)$. $gh = (1 \ 2 \ 3 \ 4 \ 5)$, $hg = (1 \ 2 \ 4 \ 5 \ 3) \neq gh$. We have o(g) = o(h) = 3 and o(gh) = o(hg) = 5.

Subgroups

Definition. A group H is a called a **subgroup** of a group G if H is a subset of G and the group operation on H is obtained by restricting the group operation on G.

Theorem Let H be a nonempty subset of a group G and define an operation on H by restricting the group operation of G. Then the following are equivalent:

- (i) H is a subgroup of G;
- (ii) H is closed under the operation and under taking the inverse, that is, $g,h\in H\implies gh\in H$ and $g\in H\implies g^{-1}\in H;$ (iii) $g,h\in H\implies gh^{-1}\in H.$

Corollary If H is a subgroup of G then (i) the identity element in H is the same as the identity element in G; (ii) for any $g \in H$ the inverse g^{-1} taken in H is the same as the inverse taken in G.

Examples of subgroups: \bullet (\mathbb{Z} , +) is a subgroup of (\mathbb{R} , +).

- $(\mathbb{Q} \setminus \{0\}, \times)$ is a subgroup of $(\mathbb{R} \setminus \{0\}, \times)$.
- The alternating group A(n) is a subgroup of the symmetric group S(n).
- The special linear group $SL(n,\mathbb{R})$ is a subgroup of the general linear group $GL(n,\mathbb{R})$.
 - Any group G is a subgroup of itself.
- If e is the identity element of a group G, then $\{e\}$ is the **trivial** subgroup of G.

Counterexamples: • $(\mathbb{R} \setminus \{0\}, \times)$ is not a subgroup of $(\mathbb{R}, +)$ since the operations do not agree.

- $(\mathbb{Z}_n, +)$ is not a subgroup of $(\mathbb{Z}, +)$ since \mathbb{Z}_n is not a subset of \mathbb{Z} (although every element of \mathbb{Z}_n is a subset of \mathbb{Z}).
- $(\mathbb{Z}\setminus\{0\},\times)$ is not a subgroup of $(\mathbb{R}\setminus\{0\},\times)$ since $(\mathbb{Z}\setminus\{0\},\times)$ is not a group.