MATH 433
Applied Algebra
Lecture 27:
Subgroups (continued).
Cyclic groups.

Order of an element in a group

Let g be an element of a group G. We say that g has finite order if $g^{n}=e$ for some positive integer n.
If this is the case, then the smallest positive integer n with this property is called the order of g and denoted $o(g)$.
Otherwise g is said to have the infinite order, $o(g)=\infty$.
Theorem 1 (i) If the order $o(g)$ is finite, then $g^{r}=g^{s}$ if and only if $r \equiv s \bmod o(g)$. In particular, $g^{r}=e$ if and only if $o(g)$ divides r.
(ii) If the order $o(g)$ infinite, then $g^{r} \neq g^{s}$ whenever $r \neq s$.

Theorem 2 If G is a finite group, then every element of G has finite order.

Theorem 3 Let G be a group and $g, h \in G$ be two commuting elements of finite order. Then $g h$ also has a finite order. Moreover, $o(g h)$ divides $\operatorname{lcm}(o(g), o(h))$.

Theorem $4 o\left(g^{-1}\right)=o(g)$ for all $g \in G$.
Proof: $\quad\left(g^{-1}\right)^{n}=g^{-n}=\left(g^{n}\right)^{-1}$ for any integer $n \geq 1$. Since $e^{-1}=e$, it follows that $\left(g^{-1}\right)^{n}=e$ if and only if $g^{n}=e$.

Definition. Given $g_{1}, g_{2} \in G$, we say that the element g_{1} is conjugate to g_{2} if $g_{1}=h g_{2} h^{-1}$ for some $h \in G$. The conjugacy is an equivalence relation on the group G.

Theorem 5 Conjugate elements have the same order.
Proof: Let $g_{1}, g_{2} \in G$ and suppose g_{1} is conjugate to g_{2}, $g_{1}=h g_{2} h^{-1}$ for some $h \in G$. Then $g_{1}^{2}=h g_{2} h^{-1} h g_{2} h^{-1}=h g_{2}^{2} h^{-1}$. By induction, $g_{1}^{n}=h g_{2}^{n} h^{-1}$ for all $n \geq 1$. If $g_{2}^{n}=e$ then $g_{1}^{n}=h e h^{-1}=h h^{-1}=e$. It follows that $o\left(g_{1}\right) \leq o\left(g_{2}\right)$. Since g_{2} is conjugate to g_{1} as well, we also have $o\left(g_{2}\right) \leq o\left(g_{1}\right)$. Thus $o\left(g_{1}\right)=o\left(g_{2}\right)$.

Corollary $o(g h)=o(h g)$ for all $g, h \in G$.
Proof: The element $g h$ is conjugate to $h g, g h=g(h g) g^{-1}$.

Subgroups

Definition. A group H is a called a subgroup of a group G if H is a subset of G and the group operation on H is obtained by restricting the group operation on G.

Theorem Let H be a nonempty subset of a group G and define an operation on H by restricting the group operation of G. Then the following are equivalent:
(i) H is a subgroup of G;
(ii) H is closed under the operation and under taking the inverse, that is, $g, h \in H \Longrightarrow g h \in H$ and $g \in H \Longrightarrow g^{-1} \in H$;
(iii) $g, h \in H \Longrightarrow g h^{-1} \in H$.

Corollary If H is a subgroup of G then (i) the identity element in H is the same as the identity element in G; (ii) for any $g \in H$ the inverse g^{-1} taken in H is the same as the inverse taken in G.

Generators of a group

Theorem 1 Let H_{1} and H_{2} be subgroups of a group G. Then the intersection $H_{1} \cap H_{2}$ is also a subgroup of G.
Proof: $g, h \in H_{1} \cap H_{2} \Longrightarrow g, h \in H_{1}$ and $g, h \in H_{2}$ $\Longrightarrow g h^{-1} \in H_{1}$ and $g h^{-1} \in H_{2} \Longrightarrow g h^{-1} \in H_{1} \cap H_{2}$.
Theorem 2 Let $H_{\alpha}, \alpha \in A$ be a collection of subgroups of a group G (where the index set A may be infinite). Then the intersection $\bigcap_{\alpha} H_{\alpha}$ is also a subgroup of G.
Let S be a nonempty subset of a group G. The group generated by S, denoted $\langle S\rangle$, is the smallest subgroup of G that contains the set S. The elements of the set S are called generators of the group $\langle S\rangle$.
Theorem 3 (i) The group $\langle S\rangle$ is the intersection of all subgroups of G that contain the set S.
(ii) The group $\langle S\rangle$ consists of all elements of the form $g_{1} g_{2} \ldots g_{k}$, where each g_{i} is either a generator $s \in S$ or the inverse s^{-1} of a generator.

Theorem The symmetric group $S(n)$ is generated by two permutations: $\tau=\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $\pi=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ n .

Proof: Let $H=\langle\tau, \pi\rangle$. We have to show that $H=S(n)$.
First we obtain that $\alpha=\tau \pi=(23 \ldots n)$. Then we observe that $\sigma(12) \sigma^{-1}=(\sigma(1) \sigma(2))$ for any permutation σ. In particular, $(1 k)=\alpha^{k-2}(12)\left(\alpha^{k-2}\right)^{-1}$ for $k=2,3 \ldots, n$. It follows that the subgroup H contains all transpositions of the form (1 k).
Further, for any integers $2 \leq k<m \leq n$ we have $(k m)=(1 k)(1 m)(1 k)$. Therefore the subgroup H contains all transpositions. Finally, every permutation in $S(n)$ is a product of transpositions, therefore it is contained in H.
Thus $H=S(n)$.
Remark. Although the group $S(n)$ is generated by two elements, its subgroups need not be generated by two elements.

Cyclic groups

A cyclic group is a subgroup generated by a single element.

Cyclic group $\langle g\rangle=\left\{g^{n}: n \in \mathbb{Z}\right\}$.
Any cyclic group is Abelian.
If g has finite order n, then $\langle g\rangle$ consists of n elements $g, g^{2}, \ldots, g^{n-1}, g^{n}=e$.
If g is of infinite order, then $\langle g\rangle$ is infinite.
Examples of cyclic groups: $\mathbb{Z}, 3 \mathbb{Z}, \mathbb{Z}_{5}, S(2), A(3)$.
Examples of noncyclic groups: any non-Abelian group, \mathbb{Q} with addition, $\mathbb{Q} \backslash\{0\}$ with multiplication.

Subgroups of \mathbb{Z}

Integers \mathbb{Z} with addition form a cyclic group, $\mathbb{Z}=\langle 1\rangle=\langle-1\rangle$. The proper cyclic subgroups of \mathbb{Z} are: the trivial subgroup $\{0\}=\langle 0\rangle$ and, for any integer $m \geq 2$, the group $m \mathbb{Z}=\langle m\rangle=\langle-m\rangle$. These are all subgroups of \mathbb{Z}.

Theorem Every subgroup of a cyclic group is cyclic as well.
Proof: Suppose that G is a cyclic group and H is a subgroup of G. Let g be the generator of $G, G=\left\{g^{n}: n \in \mathbb{Z}\right\}$. Denote by k the smallest positive integer such that $g^{k} \in H$ (if there is no such integer then $H=\{e\}$, which is a cyclic group). We are going to show that $H=\left\langle g^{k}\right\rangle$. Take any $h \in H$. Then $h=g^{n}$ for some $n \in \mathbb{Z}$. We have $n=k q+r$, where q is the quotient and r is the remainder of n by $k(0 \leq r<k)$. It follows that $g^{r}=g^{n-k q}=g^{n} g^{-k q}$ $=h\left(g^{k}\right)^{-q} \in H$. By the choice of k, we obtain that $r=0$. Thus $h=g^{n}=g^{k q}=\left(g^{k}\right)^{q} \in\left\langle g^{k}\right\rangle$.

