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Lecture 27:
Subgroups (continued).

Cyclic groups.



Order of an element in a group

Let g be an element of a group G . We say that g has finite
order if g n = e for some positive integer n.

If this is the case, then the smallest positive integer n with this
property is called the order of g and denoted o(g).
Otherwise g is said to have the infinite order, o(g) = ∞.

Theorem 1 (i) If the order o(g) is finite, then g r = g s if
and only if r ≡ s mod o(g). In particular, g r = e if and
only if o(g) divides r .
(ii) If the order o(g) infinite, then g r 6= g s whenever r 6= s.

Theorem 2 If G is a finite group, then every element of G
has finite order.

Theorem 3 Let G be a group and g , h ∈ G be two
commuting elements of finite order. Then gh also has a
finite order. Moreover, o(gh) divides lcm

(

o(g), o(h)
)

.



Theorem 4 o(g−1) = o(g) for all g ∈ G .

Proof: (g−1)n = g−n = (g n)−1 for any integer n ≥ 1. Since
e−1 = e, it follows that (g−1)n = e if and only if g n = e.

Definition. Given g1, g2 ∈ G , we say that the element g1 is
conjugate to g2 if g1 = hg2h

−1 for some h ∈ G . The
conjugacy is an equivalence relation on the group G .

Theorem 5 Conjugate elements have the same order.

Proof: Let g1, g2 ∈ G and suppose g1 is conjugate to g2,
g1 = hg2h

−1 for some h ∈ G . Then
g 2

1
= hg2h

−1hg2h
−1 = hg 2

2
h−1. By induction, g n

1
= hg n

2
h−1

for all n ≥ 1. If g n
2
= e then g n

1
= heh−1 = hh−1 = e.

It follows that o(g1) ≤ o(g2). Since g2 is conjugate to g1 as
well, we also have o(g2) ≤ o(g1). Thus o(g1) = o(g2).

Corollary o(gh) = o(hg) for all g , h ∈ G .

Proof: The element gh is conjugate to hg , gh = g(hg)g−1.



Subgroups

Definition. A group H is a called a subgroup of a group G if
H is a subset of G and the group operation on H is obtained
by restricting the group operation on G .

Theorem Let H be a nonempty subset of a group G and
define an operation on H by restricting the group operation of
G . Then the following are equivalent:
(i) H is a subgroup of G ;
(ii) H is closed under the operation and under taking the
inverse, that is, g , h ∈ H =⇒ gh ∈ H and
g ∈ H =⇒ g−1 ∈ H;
(iii) g , h ∈ H =⇒ gh−1 ∈ H.

Corollary If H is a subgroup of G then (i) the identity
element in H is the same as the identity element in G ;
(ii) for any g ∈ H the inverse g−1 taken in H is the same as
the inverse taken in G .



Generators of a group
Theorem 1 Let H1 and H2 be subgroups of a group G .
Then the intersection H1 ∩ H2 is also a subgroup of G .

Proof: g , h ∈ H1 ∩ H2 =⇒ g , h ∈ H1 and g , h ∈ H2

=⇒ gh−1 ∈ H1 and gh−1 ∈ H2 =⇒ gh−1 ∈ H1 ∩ H2.

Theorem 2 Let H
α
, α ∈ A be a collection of subgroups of a

group G (where the index set A may be infinite). Then the
intersection

⋂

α
H

α
is also a subgroup of G .

Let S be a nonempty subset of a group G . The group
generated by S , denoted 〈S〉, is the smallest subgroup of G
that contains the set S . The elements of the set S are called
generators of the group 〈S〉.

Theorem 3 (i) The group 〈S〉 is the intersection of all
subgroups of G that contain the set S .
(ii) The group 〈S〉 consists of all elements of the form

g1g2 . . . gk , where each gi is either a generator s ∈ S or the
inverse s−1 of a generator.



Theorem The symmetric group S(n) is generated by two
permutations: τ = (1 2) and π = (1 2 3 . . . n).

Proof: Let H = 〈τ, π〉. We have to show that H = S(n).

First we obtain that α = τπ = (2 3 . . . n). Then we observe
that σ(1 2)σ−1 = (σ(1) σ(2)) for any permutation σ.
In particular, (1 k) = α

k−2(1 2)(αk−2)−1 for k = 2, 3 . . . , n.
It follows that the subgroup H contains all transpositions of
the form (1 k).

Further, for any integers 2 ≤ k < m ≤ n we have
(k m) = (1 k)(1 m)(1 k). Therefore the subgroup H contains
all transpositions. Finally, every permutation in S(n) is a
product of transpositions, therefore it is contained in H.
Thus H = S(n).

Remark. Although the group S(n) is generated by two
elements, its subgroups need not be generated by two
elements.



Cyclic groups

A cyclic group is a subgroup generated by a single
element.

Cyclic group 〈g〉 = {g n : n ∈ Z}.

Any cyclic group is Abelian.

If g has finite order n, then 〈g〉 consists of n
elements g , g 2, . . . , g n−1, g n = e.

If g is of infinite order, then 〈g〉 is infinite.

Examples of cyclic groups: Z, 3Z, Z5, S(2), A(3).
Examples of noncyclic groups: any non-Abelian

group, Q with addition, Q \ {0} with multiplication.



Subgroups of Z

Integers Z with addition form a cyclic group, Z = 〈1〉 = 〈−1〉.
The proper cyclic subgroups of Z are: the trivial subgroup
{0} = 〈0〉 and, for any integer m ≥ 2, the group
mZ = 〈m〉 = 〈−m〉. These are all subgroups of Z.

Theorem Every subgroup of a cyclic group is cyclic as well.

Proof: Suppose that G is a cyclic group and H is a subgroup
of G . Let g be the generator of G , G = {g n : n ∈ Z}.
Denote by k the smallest positive integer such that g k ∈ H

(if there is no such integer then H = {e}, which is a cyclic
group). We are going to show that H = 〈g k〉.

Take any h ∈ H. Then h = g n for some n ∈ Z. We have
n = kq + r , where q is the quotient and r is the remainder of
n by k (0 ≤ r < k). It follows that g r = g n−kq = g ng−kq

= h(g k)−q ∈ H. By the choice of k, we obtain that r = 0.
Thus h = g n = g kq = (g k)q ∈ 〈g k〉.


