MATH 433
Applied Algebra

Lecture 29:

Lagrange's Theorem (continued).
Classification of subgroups.
Quotient group.

Lagrange's Theorem

Definition. Let H be a subgroup of a group G. A coset (or left coset) of the subgroup H in G is a set of the form $a H=\{a h: h \in H\}$, where $a \in G$.

Proposition The cosets of the subgroup H in G form a partition of the set G.

Definition. The number of elements in a group G is called the order of G and denoted $o(G)$. Given a subgroup H of G, the number of cosets of H in G is called the index of H in G and denoted $[G: H]$.

Theorem (Lagrange) If H is a subgroup of a finite group G, then $o(G)=[G: H] \cdot o(H)$. In particular, the order of H divides the order of G.

Corollaries of Lagrange's Theorem

Corollary 1 If G is a finite group, then the order of any element $g \in G$ divides the order of G.

Corollary 2 Any group G of prime order p is cyclic.
Corollary 3 If G is a group of prime order, then it has only 2 subgroups: the trivial subgroup and G itself.

Corollary 4 The alternating group $A(n), n \geq 2$, consists of $n!/ 2$ elements.
Proof: Indeed, $A(n)$ is a subgroup of index 2 in the symmetric group $S(n)$. The latter consists of $n!$ elements.

Corollary 5 If G is a finite group, then $g^{o(G)}=e$ for all $g \in G$.

Corollary 6 (Fermat's Little Theorem) If p is a prime number then $a^{p-1} \equiv 1 \bmod p$ for any integer a that is not a multiple of p.
Proof: $a^{p-1} \equiv 1 \bmod p$ means that $[a]_{p}^{p-1}=[1]_{p}$. a is not a multiple of p means that $[a]_{p}$ is in G_{p}, the multiplicative group of invertible congruence classes modulo p. It remains to recall that $o\left(G_{p}\right)=p-1$ and apply Corollary 5 .

Corollary 7 (Euler's Theorem) If n is a positive integer then $a^{\phi(n)} \equiv 1 \bmod n$ for any integer a coprime with n.
Proof: $a^{\phi(n)} \equiv 1 \bmod n$ means that $[a]_{n}^{\phi(n)}=[1]_{n}$. a is coprime with n means that the congruence class $[a]_{n}$ is in G_{n}. It remains to recall that $o\left(G_{n}\right)=\phi(n)$ and apply Corollary 5.

Classification of subgroups

- Subgroups of $\left(\mathbb{Z}_{10},+\right)$.

The group is cyclic: $\mathbb{Z}_{10}=\langle[1]\rangle=\langle[3]\rangle=\langle[7]\rangle=\langle[9]\rangle$.
Therefore any subgroup of \mathbb{Z}_{10} is also cyclic. There are three proper subgroups: the trivial subgroup $\{[0]\}$ (generated by [0]), a cyclic subgroup of order $2\{[0],[5]\}$ (generated by [5]), and a cyclic subgroup of order 5 \{[0], [2], [4], [6], [8]\} (generated by either of the elements [2], [4], [6], and [8]).

- Subgroups of $\left(G_{15}, \times\right)$.

The group consists of 8 congruence classes modulo 15 : $G_{15}=\{[1],[2],[4],[7],[8],[11],[13],[14]\}$. It is Abelian. However G_{15} is not cyclic since it contains a non-cyclic subgroup $\{[1],[4],[11],[14]\}=\{[1],[4],[-4],[-1]\}$. The other proper subgroups of G_{15} are cyclic: $\{[1]\},\{[1],[4]\}$, $\{[1],[11]\},\{[1],[14]\},\{[1],[2],[4],[8]\},\{[1],[4],[7],[13]\}$.

Theorem Let G be a cyclic group of finite order n. Then for any divisor d of n there exists a unique subgroup of G of order d, which is also cyclic.

Proof: Let g be the generator of the cyclic group G. Take any divisor d of n. Since the order of g is n, it follows that the element $g^{n / d}$ has order d. Therefore a cyclic group $H=\left\langle g^{n / d}\right\rangle$ has order d.
Now assume H^{\prime} is another subgroup of G of order d. The group H^{\prime} is cyclic since G is cyclic. Hence $H^{\prime}=\left\langle g^{k}\right\rangle$ for some $k \in \mathbb{Z}$. Since the order of the element g^{k} is d while the order of g is n, it follows that $\operatorname{gcd}(n, k)=n / d$. We know that $\operatorname{gcd}(n, k)=a n+b k$ for some $a, b \in \mathbb{Z}$. Then $g^{n / d}=g^{a n+b k}=g^{n a} g^{k b}=\left(g^{n}\right)^{a}\left(g^{k}\right)^{b}=\left(g^{k}\right)^{b} \in\left\langle g^{k}\right\rangle=H^{\prime}$. Consequently, $H=\left\langle g^{n / d}\right\rangle \subset H^{\prime}$. However H and H^{\prime} both consist of d elements. Thus $H^{\prime}=H$.

- Subgroups of $S(3)$.

The group consists of 6 permutations:
$S(3)=\left\{\mathrm{id},\left(\begin{array}{l}1\end{array}\right),\binom{1}{3},\left(\begin{array}{ll}2 & 3\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)\right\}$. It is not Abelian. All proper subgroups of $S(3)$ are cyclic: $\{\mathrm{id}\}$, $\{\mathrm{id},(12)\},\{\mathrm{id},(13)\},\left\{\mathrm{id},\left(\begin{array}{ll}2 & 3\end{array}\right)\right\}$, and $\left\{i d,\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array} 2\right)\right\}$.

- Subgroups of $A(4)$.

The group consists of 12 permutations:

$$
\begin{aligned}
& A(4)=\left\{\mathrm{id},\binom{1}{2}\left(\begin{array}{ll}
3 & 4
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right)(24),\left(\begin{array}{ll}
1 & 4
\end{array}\right)(23),\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right),\right. \\
& \text { (1 } 24 \text {), (1 } 4 \text { 2), (1 } 34 \text {), (1 } 4 \text { 3), (2 } 34 \text {), (2 } 43 \text {) \}. }
\end{aligned}
$$

It is not Abelian. The cyclic subgroups are $\{\mathrm{id}\}$, $\{\mathrm{id},(12)(34)\},\{\mathrm{id},(13)(24)\},\{\mathrm{id},(14)(23)\}$, $\{i d,(123),(132)\},\{i d,(124),(142)\}$, $\{\mathrm{id},(134),(143)\}$, and $\left\{\mathrm{id},\left(\begin{array}{l}2 \\ 2\end{array} 4\right),(243)\right\}$.
Also, $A(4)$ has one non-cyclic subgroup of order 4:
$\{\mathrm{id},(12)(34),(13)(24),(14)(23)\}$.

Quotient group

Let's recall the construction of the group $\left(\mathbb{Z}_{n},+\right)$. The elements are congruence classes $a+n \mathbb{Z}$ modulo n and the operation is defined by $(a+n \mathbb{Z})+(b+n \mathbb{Z})=(a+b)+n \mathbb{Z}$. Observe that congruence classes $a+n \mathbb{Z}$ are also cosets of the subgroup $n \mathbb{Z}$ in the group \mathbb{Z}.
Now consider an arbitrary group G (with multiplicative operation) and a subgroup H of G. Let G / H denote the set of all cosets $g H$ of the subgroup H in G. We try to define an operation on G / H by the rule $(a H)(b H)=(a b) H$. Assume that this operation is well defined (it need not be). Then it makes G / H into a group, which is called the quotient group of G by the subgroup H. Indeed, the closure axiom and associativity will hold in G / H since they hold in G. Further, the identity element will be $\mathrm{eH}=\mathrm{H}$ and the inverse of gH will be $g^{-1} H$.
Question. When the operation on G / H is well defined?

