
MATH 433

Applied Algebra

Lecture 29:
Lagrange’s Theorem (continued).

Classification of subgroups.
Quotient group.



Lagrange’s Theorem

Definition. Let H be a subgroup of a group G . A coset
(or left coset) of the subgroup H in G is a set of the form
aH = {ah : h ∈ H}, where a ∈ G .

Proposition The cosets of the subgroup H in G form a
partition of the set G .

Definition. The number of elements in a group G is called
the order of G and denoted o(G ). Given a subgroup H of G ,
the number of cosets of H in G is called the index of H in G

and denoted [G : H].

Theorem (Lagrange) If H is a subgroup of a finite group
G , then o(G ) = [G : H] · o(H). In particular, the order of H
divides the order of G .



Corollaries of Lagrange’s Theorem

Corollary 1 If G is a finite group, then the order of

any element g ∈ G divides the order of G .

Corollary 2 Any group G of prime order p is cyclic.

Corollary 3 If G is a group of prime order, then it
has only 2 subgroups: the trivial subgroup and G

itself.

Corollary 4 The alternating group A(n), n ≥ 2,
consists of n!/2 elements.

Proof: Indeed, A(n) is a subgroup of index 2 in the
symmetric group S(n). The latter consists of n! elements.



Corollary 5 If G is a finite group, then g o(G) = e for all
g ∈ G .

Corollary 6 (Fermat’s Little Theorem) If p is a prime
number then ap−1 ≡ 1 mod p for any integer a that is not a
multiple of p.

Proof: ap−1 ≡ 1 mod p means that [a]p−1
p = [1]p.

a is not a multiple of p means that [a]p is in Gp, the
multiplicative group of invertible congruence classes modulo p.
It remains to recall that o(Gp) = p − 1 and apply Corollary 5.

Corollary 7 (Euler’s Theorem) If n is a positive integer
then aφ(n) ≡ 1 mod n for any integer a coprime with n.

Proof: aφ(n) ≡ 1 mod n means that [a]
φ(n)
n = [1]n.

a is coprime with n means that the congruence class [a]n is in
Gn. It remains to recall that o(Gn) = φ(n) and apply
Corollary 5.



Classification of subgroups

• Subgroups of (Z10,+).

The group is cyclic: Z10 = 〈[1]〉 = 〈[3]〉 = 〈[7]〉 = 〈[9]〉.
Therefore any subgroup of Z10 is also cyclic. There are three
proper subgroups: the trivial subgroup {[0]} (generated by
[0]), a cyclic subgroup of order 2 {[0], [5]} (generated by [5]),
and a cyclic subgroup of order 5 {[0], [2], [4], [6], [8]}
(generated by either of the elements [2], [4], [6], and [8]).

• Subgroups of (G15,×).

The group consists of 8 congruence classes modulo 15:
G15 = {[1], [2], [4], [7], [8], [11], [13], [14]}. It is Abelian.
However G15 is not cyclic since it contains a non-cyclic
subgroup {[1], [4], [11], [14]} = {[1], [4], [−4], [−1]}. The
other proper subgroups of G15 are cyclic: {[1]}, {[1], [4]},
{[1], [11]}, {[1], [14]}, {[1], [2], [4], [8]}, {[1], [4], [7], [13]}.



Theorem Let G be a cyclic group of finite order n.
Then for any divisor d of n there exists a unique

subgroup of G of order d , which is also cyclic.

Proof: Let g be the generator of the cyclic group G . Take
any divisor d of n. Since the order of g is n, it follows that
the element g n/d has order d . Therefore a cyclic group
H = 〈g n/d〉 has order d .

Now assume H ′ is another subgroup of G of order d . The
group H ′ is cyclic since G is cyclic. Hence H ′ = 〈g k〉 for
some k ∈ Z. Since the order of the element g k is d while the
order of g is n, it follows that gcd(n, k) = n/d . We know
that gcd(n, k) = an + bk for some a, b ∈ Z. Then
g n/d = g an+bk = g nag kb = (g n)a(g k)b = (g k)b ∈ 〈g k〉 = H ′.
Consequently, H = 〈g n/d〉 ⊂ H ′. However H and H ′ both
consist of d elements. Thus H ′ = H.



• Subgroups of S(3).

The group consists of 6 permutations:
S(3) = {id, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}. It is not
Abelian. All proper subgroups of S(3) are cyclic: {id},
{id, (1 2)}, {id, (1 3)}, {id, (2 3)}, and {id, (1 2 3), (1 3 2)}.

• Subgroups of A(4).

The group consists of 12 permutations:

A(4) = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 2 3), (1 3 2),
(1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (2 4 3)}.

It is not Abelian. The cyclic subgroups are {id},
{id, (1 2)(3 4)}, {id, (1 3)(2 4)}, {id, (1 4)(2 3)},
{id, (1 2 3), (1 3 2)}, {id, (1 2 4), (1 4 2)},
{id, (1 3 4), (1 4 3)}, and {id, (2 3 4), (2 4 3)}.
Also, A(4) has one non-cyclic subgroup of order 4:
{id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.



Quotient group

Let’s recall the construction of the group (Zn,+). The
elements are congruence classes a + nZ modulo n and the
operation is defined by (a + nZ) + (b + nZ) = (a + b) + nZ.
Observe that congruence classes a + nZ are also cosets of the
subgroup nZ in the group Z.

Now consider an arbitrary group G (with multiplicative
operation) and a subgroup H of G . Let G/H denote the set
of all cosets gH of the subgroup H in G . We try to define an
operation on G/H by the rule (aH)(bH) = (ab)H. Assume
that this operation is well defined (it need not be). Then it
makes G/H into a group, which is called the quotient group
of G by the subgroup H. Indeed, the closure axiom and
associativity will hold in G/H since they hold in G . Further,
the identity element will be eH = H and the inverse of gH

will be g−1H.

Question. When the operation on G/H is well defined?


