MATH 433 Applied Algebra

Lecture 34: Polynomials in one variable. Division of polynomials.

Polynomials in one variable

Definition. A **polynomial** in a variable X over a ring R is an expression of the form

$$p(X) = c_0 X^0 + c_1 X^1 + c_2 X^2 + \cdots + c_n X^n$$

where c_0, c_1, \ldots, c_n are elements of the ring R (called **coefficients** of the polynomial). The **degree** deg(p) of the polynomial p(X) is the largest integer k such that $c_k \neq 0$. The set of all such polynomials is denoted R[X].

Remarks on notation. The polynomial is denoted p(X) or p. The terms c_0X^0 and c_1X^1 are usually written as c_0 and c_1X . Zero terms $0X^k$ are usually omitted. Also, the terms may be rearranged, e.g., $p(X) = c_nX^n + c_{n-1}X^{n-1} + \cdots + c_1X + c_0$. This does not change the polynomial.

Remark on formalism. Formally, a polynomial p(X) is determined by an infinite sequence $(c_0, c_1, c_2, ...)$ of elements of R such that $c_k = 0$ for k large enough.

Arithmetic of polynomials

From now on, we consider polynomials over a field \mathbb{F} .

If
$$p(X) = a_0 + a_1X + a_2X^2 + \dots + a_nX^n$$
,
 $q(X) = b_0 + b_1X + b_2X^2 + \dots + b_mX^m$,

then $(p+q)(X) = (a_0+b_0) + (a_1+b_1)X + \dots + (a_d+b_d)X^d$, where $d = \max(n, m)$ and missing coeficients are assumed to be zeroes. Also, $(\lambda p)(X) = (\lambda a_0) + (\lambda a_1)X + \dots + (\lambda a_n)X^n$ for all $\lambda \in \mathbb{F}$. This makes $\mathbb{F}[X]$ into a vector space over \mathbb{F} , with a basis $X^0, X^1, X^2, \dots, X^n, \dots$

Further, $(pq)(X) = c_0 + c_1X + c_2X^2 + \cdots + c_{n+m}X^{n+m}$, where $c_k = a_0b_k + a_1b_{k-1} + \cdots + a_{k-1}b_1 + a_kb_0$. Equivalently, the product pq is a bilinear function defined on elements of the basis by $X^nX^m = X^{n+m}$ for all $n, m \ge 0$. Now $\mathbb{F}[X]$ is a commutative ring and an associative \mathbb{F} -algebra. Notice that $\deg(p \pm q) \le \max(\deg(p), \deg(q))$. If $p, q \ne 0$ then $\deg(pq) = \deg(p) + \deg(q)$.

Polynomial expression vs. polynomial function

By definition, a polynomial $p(X) = c_n X^n + c_{n-1} X^{n-1} + \dots + c_1 X + c_0 \in \mathbb{F}[X]$ is just an expression. However we can evaluate it at any $\alpha \in \mathbb{F}$ to $p(\alpha) = c_n \alpha^n + c_{n-1} \alpha^{n-1} + \dots + c_1 \alpha + c_0$, which is an element of \mathbb{F} . Hence each polynomial $p(X) \in \mathbb{F}[X]$ gives rise to a **polynomial function** $p : \mathbb{F} \to \mathbb{F}$. One can check that $(p+q)(\alpha) = p(\alpha) + q(\alpha)$ and $(pq)(\alpha) = p(\alpha)q(\alpha)$ for all $p(X), q(X) \in \mathbb{F}[X]$ and $\alpha \in \mathbb{F}$.

Theorem All polynomials in $\mathbb{F}[X]$ are uniquely determined by the induced polynomial functions if and only if \mathbb{F} is infinite.

Proof: Suppose \mathbb{F} is finite, $\mathbb{F} = \{\alpha_1, \alpha_2, \ldots, \alpha_k\}$. Then a polynomial $p(X) = (X - \alpha_1)(X - \alpha_2) \ldots (X - \alpha_k)$ gives rise to the same function as the zero polynomial.

If \mathbb{F} is infinite, then any polynomial of degree at most n is uniquely determined by its values at n+1 distinct points of \mathbb{F} .

Division of polynomials

Let p(X) and s(X) be polynomials and $s(X) \neq 0$. We say that s(X) **divides** p(X) if p = qs for some polynomial q(X). Then q is called the **quotient** of p by s.

Let p(X) and s(X) be polynomials and s(X) be of positive degree. Suppose that p = qs + r for some polynomials q and r such that the degree of r is less than the degree of s. Then r is the **remainder** and q is the (partial) **quotient** of p by s.

Note that s(X) divides p(X) if the remainder is 0.

Theorem Let p(X) and s(X) be polynomials and s(X) be of positive degree. Then the remainder and the quotient of p by s are well-defined. Moreover, they are unique.

Long division of polynomials

Problem. Divide $x^4 + 2x^3 - 3x^2 - 9x - 7$ by $x^2 - 2x - 3$. $4x^3 - 9x - 7$ $4x^3 - 8x^2 - 12x$ $8x^2 + 3x - 7$ $8x^2 - 16x - 24$ 19x + 17

We have obtained that

$$\begin{aligned} x^4 + 2x^3 - 3x^2 - 9x - 7 &= x^2(x^2 - 2x - 3) + 4x^3 - 9x - 7, \\ 4x^3 - 9x - 7 &= 4x(x^2 - 2x - 3) + 8x^2 + 3x - 7, \\ 8x^2 + 3x - 7 &= 8(x^2 - 2x - 3) + 19x + 17. \\ x^4 + 2x^3 - 3x^2 - 9x - 7 &= (x^2 + 4x + 8)(x^2 - 2x - 3) + 19x + 17. \end{aligned}$$