MATH 433
Applied Algebra
Lecture 35:
Greatest common divisor of polynomials. Factorisation of polynomials.

Division of polynomials

Let $f(x), g(x) \in \mathbb{F}[x]$ be polynomials over a field \mathbb{F} and $g(x) \neq 0$. We say that $g(x)$ divides $f(x)$ if $f=q g$ for some polynomial $q(x) \in \mathbb{F}[x]$. Then q is called the quotient of f by g.
Let $f(x)$ and $g(x)$ be polynomials and $\operatorname{deg}(g)>0$. Suppose that $f=q g+r$ for some polynomials q and r such that $\operatorname{deg}(r)<\operatorname{deg}(g)$. Then r is the remainder and q is the (partial) quotient of f by g.
Note that $g(x)$ divides $f(x)$ if the remainder is 0 .
Theorem Let $f(x)$ and $g(x)$ be polynomials and $\operatorname{deg}(g)>0$. Then the remainder and the quotient of f by g are well-defined. Moreover, they are unique.

Long division of polynomials

Problem. Divide $x^{4}+2 x^{3}-3 x^{2}-9 x-7$ by $x^{2}-2 x-3$.

$$
\begin{aligned}
& x^{2}-2 x-3 \left\lvert\, \frac{x^{2}+4 x+8}{x^{4}+2 x^{3}-3 x^{2}-9 x-7}\right. \\
& x^{4}-2 x^{3}-3 x^{2} \\
& \begin{array}{r}
4 x^{3}-9 x-7 \\
4 x^{3}-8 x^{2}-12 x-7
\end{array} \\
& \frac{8 x^{2}-16 x-24}{19 x+17}
\end{aligned}
$$

We have obtained that
$x^{4}+2 x^{3}-3 x^{2}-9 x-7=x^{2}\left(x^{2}-2 x-3\right)+4 x^{3}-9 x-7$,
$4 x^{3}-9 x-7=4 x\left(x^{2}-2 x-3\right)+8 x^{2}+3 x-7$, $8 x^{2}+3 x-7=8\left(x^{2}-2 x-3\right)+19 x+17$. Therefore
$x^{4}+2 x^{3}-3 x^{2}-9 x-7=\left(x^{2}+4 x+8\right)\left(x^{2}-2 x-3\right)+19 x+17$.

Zeroes of polynomials

Definition. An element $\alpha \in \mathbb{F}$ is called a zero (or a root) of a polynomial $f \in \mathbb{F}[x]$ if $f(\alpha)=0$.
Theorem $\alpha \in \mathbb{F}$ is a zero of $f \in \mathbb{F}[x]$ if and only if the polynomial $f(x)$ is divisible by $x-\alpha$.

Proposition Suppose $f(x)=x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}$ is a polynomial with integer coefficients and $c_{0} \neq 0$. Then any rational zero of f is an integer dividing c_{0}.

Example. $f(x)=x^{3}+6 x^{2}+11 x+6$.
By Proposition, possible rational zeroes of f are $\pm 1, \pm 2, \pm 3$. Moreover, there are no positive zeroes as all coefficients are positive. We obtain that $f(-1)=0, f(-2)=0$, and $f(-3)=0$. First we divide $f(x)$ by $x+1$:
$x^{3}+6 x^{2}+11 x+6=(x+1)\left(x^{2}+5 x+6\right)$. Then we divide $x^{2}+5 x+6$ by $x+2: x^{2}+5 x+6=(x+2)(x+3)$. Thus $f(x)=(x+1)(x+2)(x+3)$.

Greatest common divisor

Definition. Given non-zero polynomials $f, g \in \mathbb{F}[x]$, a greatest common divisor $\operatorname{gcd}(f, g)$ is a polynomial over \mathbb{F} such that (i) $\operatorname{gcd}(f, g)$ divides f and g, and (ii) if any $p \in \mathbb{F}[x]$ divides both f and g, then it also divides $\operatorname{gcd}(f, g)$.

Theorem The polynomial $\operatorname{gcd}(f, g)$ exists and is unique up to a scalar multiple. Moreover, it is a non-zero polynomial of the least degree that can be represented as $u f+v g$, where $u, v \in \mathbb{F}[x]$.

Theorem The polynomial $\operatorname{gcd}(f, g)$ exists and is unique up to a scalar multiple. Moreover, it is a non-zero polynomial of the least degree that can be represented as $u f+v g$, where $u, v \in \mathbb{F}[x]$.

Proof: Let S denote the set of all polynomials of the form $u f+v g$, where $u, v \in \mathbb{F}[x]$. The set S contains non-zero polynomials, say, f. Let $d(x)$ be any such polynomial of the least possible degree. It is easy to show that remainders under division of f and of g by d belong to S. By the choice of d, both remainders must be zeroes. Hence d divides both f and g. Further, if any $p(x) \in \mathbb{F}[x]$ divides both f and g, then it also divides every element of S. In particular, it divides d. Thus $d=\operatorname{gcd}(f, g)$.
Now assume d_{1} is another greatest common divisor of f and g. By definition, d_{1} divides d and d divides d_{1}. This is only possible if d and d_{1} are scalar multiples of each other.

Euclidean algorithm

Lemma 1 If a polynomial g divides a polynomial f then $\operatorname{gcd}(f, g)=g$.

Lemma 2 If g does not divide f and r is the remainder of f by g, then $\operatorname{gcd}(f, g)=\operatorname{gcd}(g, r)$.

Theorem For any non-zero polynomials
$f, g \in \mathbb{F}[x]$ there exists a sequence of polynomials $r_{1}, r_{2}, \ldots, r_{k} \in \mathbb{F}[x]$ such that $r_{1}=f, r_{2}=g$, r_{i} is the remainder of r_{i-2} by r_{i-1} for $3 \leq i \leq k$, and r_{k} divides r_{k-1}. Then $\operatorname{gcd}(f, g)=r_{k}$.

Irreducible polynomials

Definition. A polynomial $f \in \mathbb{F}[x]$ is said to be irreducible over \mathbb{F} if it cannot be written as $f=g h$, where $g, h \in \mathbb{F}[x]$, and $\operatorname{deg}(g), \operatorname{deg}(h)<\operatorname{deg}(f)$.
Irreducible polynomials are for multiplication of polynomials what prime numbers are for multiplication of integers.

Proposition 1 Let f be an irreducible polynomial and suppose that f divides a product $f_{1} f_{2}$. Then f divides at least one of the polynomials f_{1} and f_{2}.

Proposition 2 Let f be an irreducible polynomial and suppose that f divides a product of polynomials $f_{1} f_{2} \ldots f_{r}$. Then f divides at least one of the factors $f_{1}, f_{2}, \ldots, f_{r}$.

Proposition 3 Let f be an irreducible polynomial that divides a product $f_{1} f_{2} \ldots f_{r}$ of other irreducible polynomials. Then one of the factors $f_{1}, f_{2}, \ldots, f_{r}$ is a scalar multiple of f.

Unique factorisation

Theorem Any polynomial $f \in \mathbb{F}[x]$ of positive degree admits a factorisation $f=p_{1} p_{2} \ldots p_{k}$ into irreducible factors over \mathbb{F}. This factorisation is unique up to rearranging the factors and multiplying them by non-zero scalars.

Ideas of the proof: The existence is proved by strong induction on $\operatorname{deg}(f)$. It is based on a simple fact: if $p_{1} p_{2} \ldots p_{s}$ is an irreducible factorisation of f and $q_{1} q_{2} \ldots q_{t}$ is an irreducible factorisation of g, then $p_{1} p_{2} \ldots p_{s} q_{1} q_{2} \ldots q_{t}$ is an irreducible factorisation of $f g$.

The uniqueness is proved by (normal) induction on the number of irreducible factors. It is based on a (not so simple) fact: if an irreducible polynomial p divides a product of irreducible polynomials $q_{1} q_{2} \ldots q_{t}$ then one of the factors q_{1}, \ldots, q_{t} is a scalar multiple of p.

Factorisation over \mathbb{C} and \mathbb{R}

Clearly, any polynomial $f \in \mathbb{F}[x]$ of degree 1 is irreducible over \mathbb{F}. Depending on the field \mathbb{F}, there may exist other irreducible polynomials as well.

Fundamental Theorem of Algebra The only irreducible polynomials over the field \mathbb{C} of complex numbers are linear polynomials. Equivalently, any polynomial $f \in \mathbb{C}[x]$ of a positive degree n can be factorised as

$$
f(x)=c\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{n}\right),
$$

where $c, \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ and $c \neq 0$.
Corollary The only irreducible polynomials over the field \mathbb{R} of real numbers are linear polynomials and quadratic polynomials without real roots.
Remark. If $f(x)=x^{2}+a x+b$ is an irreducible polynomial over \mathbb{R}, then $f(x)=(x-\alpha)(x-\bar{\alpha})=x^{2}-(\alpha+\bar{\alpha}) x+\alpha \bar{\alpha}$, where α and $\bar{\alpha}$ are complex conjugate roots of f.

Examples of factorisation

- $f(x)=x^{4}-1$ over \mathbb{R}.
$f(x)=\left(x^{2}-1\right)\left(x^{2}+1\right)=(x-1)(x+1)\left(x^{2}+1\right)$.
The polynomial $x^{2}+1$ is irreducible over \mathbb{R}.
- $f(x)=x^{4}-1$ over \mathbb{C}.
$f(x)=\left(x^{2}-1\right)\left(x^{2}+1\right)=(x-1)(x+1)\left(x^{2}+1\right)$
$=(x-1)(x+1)(x-i)(x+i)$.
- $f(x)=x^{6}-1$ over \mathbb{Z}_{7}.

It follows from Fermat's Little Theorem that any non-zero element of the field \mathbb{Z}_{7} is a root of the polynomial f. Hence f has 6 distinct roots. Now it follows from the Unique Factorisation Theorem that

$$
f(x)=(x-1)(x-2)(x-3)(x-4)(x-5)(x-6) .
$$

