Sample problems for the final exam

Any problem may be altered or replaced by a different one!

Problem 1. The number 63000 has how many positive divisors?

Problem 2. Solve a system of congruences (find all solutions):

$$
\left\{\begin{array}{l}
x \equiv 2 \bmod 5 \\
x \equiv 3 \bmod 6 \\
x \equiv 6 \bmod 7
\end{array}\right.
$$

Problem 3. Find all integer solutions of a system

$$
\left\{\begin{array}{l}
2 x+5 y-z=1 \\
x-2 y+3 z=2
\end{array}\right.
$$

[Hint: Eliminate one of the variables.]

Problem 4. You receive a message that was encrypted using the RSA system with public key $(55,27)$, where 55 is the base and 27 is the exponent. The encrypted message, in two blocks, is $4 / 7$. Find the private key and decrypt the message.

Problem 5. Let $\pi=(12)(23)(34)(45)(56), \sigma=(123)(234)(345)(456)$. Find the order and the sign of the following permutations: $\pi, \sigma, \pi \sigma$, and $\sigma \pi$.

Problem 6. For any positive integer n let $n \mathbb{Z}$ denote the set of all integers divisible by n.
(i) Does the set $3 \mathbb{Z} \cup 4 \mathbb{Z} \cup 7 \mathbb{Z}$ form a semigroup under addition? Does it form a group?
(ii) Does the set $3 \mathbb{Z} \cup 4 \mathbb{Z} \cup 7 \mathbb{Z}$ form a semigroup under multiplication? Does it form a group?

Problem 7. Given a group G, an element $c \in G$ is called central if it commutes with any element of the group: $c g=g c$ for all $g \in G$. The set of all central elements, denoted $C(G)$, is called the center of G. Prove that $C(G)$ is a normal subgroup of G.

Problem 8. Find a direct product of cyclic groups that is isomorphic to G_{16} (multiplicative group of all invertible congruence classes modulo 16).

Problem 9. Complete the following Cayley table of a group of order 9:

$*$	A	B	C	D	E	F	G	H	I
A	I								F
B		F						G	
C			H				E		
D				G		A			
E					E				
F				A		B			
G			E				A		
H		G						D	
I	F								C

Problem 10. A linear binary coding function f is defined by a generator matrix

$$
G=\left(\begin{array}{lllllll}
0 & \square & 0 & 1 & 1 & 0 & 1 \\
1 & \square & 0 & 1 & 1 & 1 & 0 \\
0 & \square & 1 & 1 & 0 & 1 & 1
\end{array}\right)
$$

with some entries missing. Fill in the missing entries so that f can detect as many errors as possible. Explain.

Problem 11. Find all prime numbers p such that a polynomial $x^{4}-x^{3}+x^{2}-x+1$ is divisible by $x+2$ in $\mathbb{Z}_{p}[x]$.

Problem 12. Factorise the polynomial $p(x)=x^{4}-2 x^{3}-x^{2}-2 x+1$ into irreducible factors over the fields $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_{5}$ and \mathbb{Z}_{7}.
[Hint: use the substitution $y=x+x^{-1}$.]

