
MATH 433

Applied Algebra

Lecture 38:

Review for the final exam.



Topics for the final exam: Part I

• Mathematical induction, strong induction

• Greatest common divisor, Euclidean algorithm

• Primes, factorisation, Unique Factorisation Theorem

• Congruence classes, modular arithmetic

• Inverse of a congruence class

• Linear congruences

• Chinese Remainder Theorem

• Order of a congruence class

• Fermat’s Little Theorem, Euler’s Theorem

• Euler’s phi-function

• Public key encryption, the RSA system



Topics for the final exam: Part II

• Relations, properties of relations
• Finite state machines, automata

• Permutations
• Cycles, transpositions
• Cycle decomposition of a permutation
• Order of a permutation
• Sign of a permutation
• Symmetric and alternating groups

• Abstract groups (definition and examples)
• Basic properties of groups
• Semigroups
• Rings, zero-divisors
• Basic properties of rings
• Fields, characteristic of a field
• Vector spaces over a field



Topics for the final exam: Part III

• Order of an element in a group
• Subgroups
• Cyclic groups
• Cosets
• Lagrange’s Theorem
• Isomorphism of groups, classification of groups

• The ISBN code
• Binary codes, error detection and error correction
• Linear codes, generator matrix
• Coset leaders, coset decoding table
• Parity-check matrix, syndromes

• Division of polynomials
• Greatest common divisor of polynomials
• Factorisation of polynomials



Problem. Solve the equation

2x100 + x71 + x29 = 0 over the field Z11.

The equation is equivalent to

x29(2x71 + x42 + 1) = 0.

Hence x = 0 or 2x71 + x42 + 1 = 0. By Fermat’s

Little Theorem, x10 = 1 for any nonzero x ∈ Z11.
Since 0 is not a solution of the equation

2x71 + x42 + 1 = 0, this equation is equivalent to
2x + x2 + 1 = 0 ⇐⇒ (x + 1)2 = 0 ⇐⇒ x = −1.

Thus the solutions are x = 0 and x = 10

(note that −1 ≡ 10 mod 11).



Problem. Factorise p(x) = x4 + x3 − 2x2 + 3x − 1 into
irreducible factors over the field Q.

Possible rational zeros of p are 1 and −1. They are not zeros.
Hence p is either irreducible over Q or else it is factored as

x4 + x3 − 2x2 + 3x − 1 = (ax2 + bx + c)(a′x2 + b′x + c ′).

Since p ∈ Z[x ], one can show that the factorisation (if it
exists) can be chosen so that all coefficients are integer.
Additionally, we can assume that a ≥ 0 (otherwise we could
multiply each factor by −1). Equating the corresponding
coefficients of the left-hand side and the right-hand side, we
obtain aa′ = 1, ab′ + a′b = 1, ac ′ + bb′ + a′c = −2,
bc ′ + b′c = 3 and cc ′ = −1. The first and the last equations
imply that a = a′ = 1, c = 1 or −1, and c ′ = −c. Then
b + b′ = 1 and bb′ = −2, which implies {b, b′} = {2,−1}.
Finally, c = −1 if b = 2 and c = 1 if b = −1. We can
check that indeed

x4 + x3 − 2x2 + 3x − 1 = (x2 + 2x − 1)(x2 − x + 1).



Problem. The polynomial f (x) = x6 + 3x5 − 5x3 + 3x − 1
has how many distinct complex roots?

Let p ∈ C[x ] be a nonzero polynomial. We say that α ∈ C

is a root of p of multiplicity k ≥ 1 if the polynomial is
divisible by (x − α)k but not divisible by (x − α)k+1.
Equivalently, p(x) = (x − α)kq(x) for some polynomial q
such that q(α) 6= 0. If this is the case then

p′(x) =
(

(x − α)k
)

′

q(x) + (x − α)kq′(x)

= k(x − α)k−1q(x) + (x − α)kq′(x) = (x − α)k−1r(x),

where r(x) = kq(x) + (x − α)q′(x). Note that r(x) is a
polynomial and r(α) = kq(α) 6= 0. Hence α is a root of p′ of
multiplicity k − 1 if k > 1 and not a root of p′ if k = 1.



Problem. The polynomial f (x) = x6 + 3x5 − 5x3 + 3x − 1
has how many distinct complex roots?

By the Fundamental Theorem of Algebra, any polynomial
p ∈ C[x ] of degree n ≥ 1 can be represented as

p(x) = c(x − α1)(x − α2) . . . (x − αn),

where c, α1, . . . , αn ∈ C and c 6= 0. The numbers
α1, α2, . . . , αn are roots of p, they need not be distinct. We
have

p(x) = c(x − β1)
k1(x − β2)

k2 . . . (x − βm)
km ,

where β1, . . . , βm are distinct roots of p and k1, . . . , km are
their multiplicities. It follows from the above that

gcd(p(x), p′(x)) = (x − β1)
k1−1(x − β2)

k2−1 . . . (x − βm)
km−1.

As a consequence, the number of distinct roots of the
polynomial p equals deg(p)− deg(gcd(p, p′)).



Problem. The polynomial f (x) = x6 + 3x5 − 5x3 + 3x − 1
has how many distinct complex roots?

Let’s use the Euclidean algorithm to find the greatest common
divisor of the polynomials f (x) = x6 + 3x5 − 5x3 + 3x − 1
and f ′(x) = 6x5 + 15x4 − 15x2 + 3. First we divide f by f ′:

x6+3x5−5x3+3x−1 = (6x5+15x4−15x2+3)
(

1

6
x+ 1

12

)

+ r(x),

where r(x) = −5

4
x4 − 5

2
x3 + 5

4
x2 + 5

2
x − 5

4
. It is convenient

to replace the remainder r(x) by its scalar multiple

r̃(x) = −4

5
r(x) = x4 + 2x3 − x2 − 2x + 1. Next we divide f ′

by r̃ :

6x5 + 15x4 − 15x2 + 3 = (x4 + 2x3 − x2 − 2x + 1)(6x + 3).

Since f ′ is divisible by r̃ , it follows that gcd(f , f ′) = gcd(f ′, r)
= gcd(f ′, r̃) = r̃ . Thus the number of distinct complex roots
of the polynomial f equals deg(f )− deg(gcd(f , f ′)) = 6− 4
= 2.



Problem. The polynomial f (x) = x6 + 3x5 − 5x3 + 3x − 1
has how many distinct complex roots?

As a follow-up to the solution, we can find the roots of the
polynomial f . It follows from the solution that the polynomial
g = f / gcd(f , f ′) has the same roots as f but, unlike f , all
roots of g are simple (i.e., of multiplicity 1). Dividing f by
r̃(x) = x4 + 2x3 − x2 − 2x + 1, we obtain

x6+3x5−5x3+3x−1 = (x4+2x3−x2−2x+1)(x2+x−1).

The polynomial g(x) = x2 + x − 1 has two real roots
β1,2 =

1

2
(−1±

√
5). Therefore f (x) = (x − β1)

k1(x − β2)
k2 ,

where k1 and k2 are positive integers, k1 + k2 = 6. Note that
β1β2 = −1 (the constant term of g) and βk1

1
βk2

2
= −1 (the

constant term of f ). Then βk1−k2

1 = (−1)k2+1, a rational
number. This suggests k1 − k2 = 0 (so that k1 = k2 = 3).
We can check by direct multiplication that, indeed,

x6+3x5−5x3+3x−1 = (x2+x−1)3 = (x−β1)
3(x−β2)

3.


