MATH 433
Applied Algebra
Lecture 38:
Review for the final exam.

Topics for the final exam: Part I

- Mathematical induction, strong induction
- Greatest common divisor, Euclidean algorithm
- Primes, factorisation, Unique Factorisation Theorem
- Congruence classes, modular arithmetic
- Inverse of a congruence class
- Linear congruences
- Chinese Remainder Theorem
- Order of a congruence class
- Fermat's Little Theorem, Euler's Theorem
- Euler's phi-function
- Public key encryption, the RSA system

Topics for the final exam: Part II

- Relations, properties of relations
- Finite state machines, automata
- Permutations
- Cycles, transpositions
- Cycle decomposition of a permutation
- Order of a permutation
- Sign of a permutation
- Symmetric and alternating groups
- Abstract groups (definition and examples)
- Basic properties of groups
- Semigroups
- Rings, zero-divisors
- Basic properties of rings
- Fields, characteristic of a field
- Vector spaces over a field

Topics for the final exam: Part III

- Order of an element in a group
- Subgroups
- Cyclic groups
- Cosets
- Lagrange's Theorem
- Isomorphism of groups, classification of groups
- The ISBN code
- Binary codes, error detection and error correction
- Linear codes, generator matrix
- Coset leaders, coset decoding table
- Parity-check matrix, syndromes
- Division of polynomials
- Greatest common divisor of polynomials
- Factorisation of polynomials

Problem. Solve the equation
$2 x^{100}+x^{71}+x^{29}=0$ over the field \mathbb{Z}_{11}.
The equation is equivalent to

$$
x^{29}\left(2 x^{71}+x^{42}+1\right)=0
$$

Hence $x=0$ or $2 x^{71}+x^{42}+1=0$. By Fermat's Little Theorem, $x^{10}=1$ for any nonzero $x \in \mathbb{Z}_{11}$.
Since 0 is not a solution of the equation
$2 x^{71}+x^{42}+1=0$, this equation is equivalent to $2 x+x^{2}+1=0 \Longleftrightarrow(x+1)^{2}=0 \Longleftrightarrow x=-1$.
Thus the solutions are $x=0$ and $x=10$ (note that $-1 \equiv 10 \bmod 11$).

Problem. Factorise $p(x)=x^{4}+x^{3}-2 x^{2}+3 x-1$ into irreducible factors over the field \mathbb{Q}.

Possible rational zeros of p are 1 and -1 . They are not zeros. Hence p is either irreducible over \mathbb{Q} or else it is factored as

$$
x^{4}+x^{3}-2 x^{2}+3 x-1=\left(a x^{2}+b x+c\right)\left(a^{\prime} x^{2}+b^{\prime} x+c^{\prime}\right) .
$$

Since $p \in \mathbb{Z}[x]$, one can show that the factorisation (if it exists) can be chosen so that all coefficients are integer. Additionally, we can assume that $a \geq 0$ (otherwise we could multiply each factor by -1). Equating the corresponding coefficients of the left-hand side and the right-hand side, we obtain $a a^{\prime}=1, a b^{\prime}+a^{\prime} b=1, a c^{\prime}+b b^{\prime}+a^{\prime} c=-2$, $b c^{\prime}+b^{\prime} c=3$ and $c c^{\prime}=-1$. The first and the last equations imply that $a=a^{\prime}=1, c=1$ or -1 , and $c^{\prime}=-c$. Then $b+b^{\prime}=1$ and $b b^{\prime}=-2$, which implies $\left\{b, b^{\prime}\right\}=\{2,-1\}$. Finally, $c=-1$ if $b=2$ and $c=1$ if $b=-1$. We can check that indeed

$$
x^{4}+x^{3}-2 x^{2}+3 x-1=\left(x^{2}+2 x-1\right)\left(x^{2}-x+1\right) .
$$

Problem. The polynomial $f(x)=x^{6}+3 x^{5}-5 x^{3}+3 x-1$ has how many distinct complex roots?

Let $p \in \mathbb{C}[x]$ be a nonzero polynomial. We say that $\alpha \in \mathbb{C}$ is a root of p of multiplicity $k \geq 1$ if the polynomial is divisible by $(x-\alpha)^{k}$ but not divisible by $(x-\alpha)^{k+1}$. Equivalently, $p(x)=(x-\alpha)^{k} q(x)$ for some polynomial q such that $q(\alpha) \neq 0$. If this is the case then

$$
\begin{aligned}
p^{\prime}(x) & =\left((x-\alpha)^{k}\right)^{\prime} q(x)+(x-\alpha)^{k} q^{\prime}(x) \\
& =k(x-\alpha)^{k-1} q(x)+(x-\alpha)^{k} q^{\prime}(x)=(x-\alpha)^{k-1} r(x),
\end{aligned}
$$

where $r(x)=k q(x)+(x-\alpha) q^{\prime}(x)$. Note that $r(x)$ is a polynomial and $r(\alpha)=k q(\alpha) \neq 0$. Hence α is a root of p^{\prime} of multiplicity $k-1$ if $k>1$ and not a root of p^{\prime} if $k=1$.

Problem. The polynomial $f(x)=x^{6}+3 x^{5}-5 x^{3}+3 x-1$ has how many distinct complex roots?

By the Fundamental Theorem of Algebra, any polynomial $p \in \mathbb{C}[x]$ of degree $n \geq 1$ can be represented as

$$
p(x)=c\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{n}\right),
$$

where $c, \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ and $c \neq 0$. The numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are roots of p, they need not be distinct. We have

$$
p(x)=c\left(x-\beta_{1}\right)^{k_{1}}\left(x-\beta_{2}\right)^{k_{2}} \ldots\left(x-\beta_{m}\right)^{k_{m}},
$$

where $\beta_{1}, \ldots, \beta_{m}$ are distinct roots of p and k_{1}, \ldots, k_{m} are their multiplicities. It follows from the above that

$$
\operatorname{gcd}\left(p(x), p^{\prime}(x)\right)=\left(x-\beta_{1}\right)^{k_{1}-1}\left(x-\beta_{2}\right)^{k_{2}-1} \ldots\left(x-\beta_{m}\right)^{k_{m}-1} .
$$

As a consequence, the number of distinct roots of the polynomial p equals $\operatorname{deg}(p)-\operatorname{deg}\left(\operatorname{gcd}\left(p, p^{\prime}\right)\right)$.

Problem. The polynomial $f(x)=x^{6}+3 x^{5}-5 x^{3}+3 x-1$ has how many distinct complex roots?

Let's use the Euclidean algorithm to find the greatest common divisor of the polynomials $f(x)=x^{6}+3 x^{5}-5 x^{3}+3 x-1$ and $f^{\prime}(x)=6 x^{5}+15 x^{4}-15 x^{2}+3$. First we divide f by f^{\prime} : $x^{6}+3 x^{5}-5 x^{3}+3 x-1=\left(6 x^{5}+15 x^{4}-15 x^{2}+3\right)\left(\frac{1}{6} x+\frac{1}{12}\right)+r(x)$,
where $r(x)=-\frac{5}{4} x^{4}-\frac{5}{2} x^{3}+\frac{5}{4} x^{2}+\frac{5}{2} x-\frac{5}{4}$. It is convenient to replace the remainder $r(x)$ by its scalar multiple $\tilde{r}(x)=-\frac{4}{5} r(x)=x^{4}+2 x^{3}-x^{2}-2 x+1$. Next we divide f^{\prime} by \tilde{r} :

$$
6 x^{5}+15 x^{4}-15 x^{2}+3=\left(x^{4}+2 x^{3}-x^{2}-2 x+1\right)(6 x+3)
$$

Since f^{\prime} is divisible by \tilde{r}, it follows that $\operatorname{gcd}\left(f, f^{\prime}\right)=\operatorname{gcd}\left(f^{\prime}, r\right)$ $=\operatorname{gcd}\left(f^{\prime}, \tilde{r}\right)=\tilde{r}$. Thus the number of distinct complex roots of the polynomial f equals $\operatorname{deg}(f)-\operatorname{deg}\left(\operatorname{gcd}\left(f, f^{\prime}\right)\right)=6-4$ $=2$.

Problem. The polynomial $f(x)=x^{6}+3 x^{5}-5 x^{3}+3 x-1$ has how many distinct complex roots?

As a follow-up to the solution, we can find the roots of the polynomial f. It follows from the solution that the polynomial $g=f / \operatorname{gcd}\left(f, f^{\prime}\right)$ has the same roots as f but, unlike f, all roots of g are simple (i.e., of multiplicity 1). Dividing f by $\tilde{r}(x)=x^{4}+2 x^{3}-x^{2}-2 x+1$, we obtain

$$
x^{6}+3 x^{5}-5 x^{3}+3 x-1=\left(x^{4}+2 x^{3}-x^{2}-2 x+1\right)\left(x^{2}+x-1\right) .
$$

The polynomial $g(x)=x^{2}+x-1$ has two real roots $\beta_{1,2}=\frac{1}{2}(-1 \pm \sqrt{5})$. Therefore $f(x)=\left(x-\beta_{1}\right)^{k_{1}}\left(x-\beta_{2}\right)^{k_{2}}$, where k_{1} and k_{2} are positive integers, $k_{1}+k_{2}=6$. Note that $\beta_{1} \beta_{2}=-1$ (the constant term of g) and $\beta_{1}^{k_{1}} \beta_{2}^{k_{2}}=-1$ (the constant term of f). Then $\beta_{1}^{k_{1}-k_{2}}=(-1)^{k_{2}+1}$, a rational number. This suggests $k_{1}-k_{2}=0$ (so that $k_{1}=k_{2}=3$). We can check by direct multiplication that, indeed,

$$
x^{6}+3 x^{5}-5 x^{3}+3 x-1=\left(x^{2}+x-1\right)^{3}=\left(x-\beta_{1}\right)^{3}\left(x-\beta_{2}\right)^{3} .
$$

